refactor: extract skills from commands across 8 plugins

Refactored commands to extract reusable skills following the
Commands → Skills separation pattern. Each command is now <50 lines
and references skill files for detailed knowledge.

Plugins refactored:
- claude-config-maintainer: 5 commands → 7 skills
- code-sentinel: 3 commands → 2 skills
- contract-validator: 5 commands → 6 skills
- data-platform: 10 commands → 6 skills
- doc-guardian: 5 commands → 6 skills (replaced nested dir)
- git-flow: 8 commands → 7 skills

Skills contain: workflows, validation rules, conventions,
reference data, tool documentation

Commands now contain: YAML frontmatter, agent assignment,
skills list, brief workflow steps, parameters

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-30 17:32:24 -05:00
parent aad02ef2d9
commit 7c8a20c804
71 changed files with 3896 additions and 3690 deletions

View File

@@ -1,18 +1,13 @@
# /profile - Data Profiling
## Skills to Load
- skills/data-profiling.md
- skills/mcp-tools-reference.md
- skills/visual-header.md
## Visual Output
When executing this command, display the plugin header:
```
┌──────────────────────────────────────────────────────────────────┐
│ 📊 DATA-PLATFORM · Data Profile │
└──────────────────────────────────────────────────────────────────┘
```
Then proceed with the profiling.
Generate statistical profile and quality report for a DataFrame.
Display header: `DATA-PLATFORM - Data Profile`
## Usage
@@ -22,24 +17,12 @@ Generate statistical profile and quality report for a DataFrame.
## Workflow
1. **Get data reference**:
- If no data_ref provided, use `list_data` to show available options
- Validate the data_ref exists
Execute `skills/data-profiling.md` profiling workflow:
2. **Generate profile**:
- Use `describe` for statistical summary
- Analyze null counts, unique values, data types
3. **Quality assessment**:
- Identify columns with high null percentage
- Flag potential data quality issues
- Suggest cleaning operations if needed
4. **Report**:
- Summary statistics per column
- Data type distribution
- Memory usage
- Quality score
1. **Get data reference**: Use `list_data` if none provided
2. **Generate profile**: Use `describe` for statistics
3. **Quality assessment**: Identify null columns, potential issues
4. **Report**: Statistics, types, memory usage, quality score
## Examples
@@ -48,9 +31,8 @@ Generate statistical profile and quality report for a DataFrame.
/profile df_a1b2c3d4
```
## Available Tools
## Required MCP Tools
Use these MCP tools:
- `describe` - Get statistical summary
- `head` - Preview first rows
- `list_data` - List available DataFrames