refactor: extract skills from commands across 8 plugins
Refactored commands to extract reusable skills following the Commands → Skills separation pattern. Each command is now <50 lines and references skill files for detailed knowledge. Plugins refactored: - claude-config-maintainer: 5 commands → 7 skills - code-sentinel: 3 commands → 2 skills - contract-validator: 5 commands → 6 skills - data-platform: 10 commands → 6 skills - doc-guardian: 5 commands → 6 skills (replaced nested dir) - git-flow: 8 commands → 7 skills Skills contain: workflows, validation rules, conventions, reference data, tool documentation Commands now contain: YAML frontmatter, agent assignment, skills list, brief workflow steps, parameters Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -1,18 +1,13 @@
|
||||
# /profile - Data Profiling
|
||||
|
||||
## Skills to Load
|
||||
- skills/data-profiling.md
|
||||
- skills/mcp-tools-reference.md
|
||||
- skills/visual-header.md
|
||||
|
||||
## Visual Output
|
||||
|
||||
When executing this command, display the plugin header:
|
||||
|
||||
```
|
||||
┌──────────────────────────────────────────────────────────────────┐
|
||||
│ 📊 DATA-PLATFORM · Data Profile │
|
||||
└──────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
Then proceed with the profiling.
|
||||
|
||||
Generate statistical profile and quality report for a DataFrame.
|
||||
Display header: `DATA-PLATFORM - Data Profile`
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -22,24 +17,12 @@ Generate statistical profile and quality report for a DataFrame.
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Get data reference**:
|
||||
- If no data_ref provided, use `list_data` to show available options
|
||||
- Validate the data_ref exists
|
||||
Execute `skills/data-profiling.md` profiling workflow:
|
||||
|
||||
2. **Generate profile**:
|
||||
- Use `describe` for statistical summary
|
||||
- Analyze null counts, unique values, data types
|
||||
|
||||
3. **Quality assessment**:
|
||||
- Identify columns with high null percentage
|
||||
- Flag potential data quality issues
|
||||
- Suggest cleaning operations if needed
|
||||
|
||||
4. **Report**:
|
||||
- Summary statistics per column
|
||||
- Data type distribution
|
||||
- Memory usage
|
||||
- Quality score
|
||||
1. **Get data reference**: Use `list_data` if none provided
|
||||
2. **Generate profile**: Use `describe` for statistics
|
||||
3. **Quality assessment**: Identify null columns, potential issues
|
||||
4. **Report**: Statistics, types, memory usage, quality score
|
||||
|
||||
## Examples
|
||||
|
||||
@@ -48,9 +31,8 @@ Generate statistical profile and quality report for a DataFrame.
|
||||
/profile df_a1b2c3d4
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
## Required MCP Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `describe` - Get statistical summary
|
||||
- `head` - Preview first rows
|
||||
- `list_data` - List available DataFrames
|
||||
|
||||
Reference in New Issue
Block a user