Compare commits
13 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| a77b8ee123 | |||
| 498dac5230 | |||
| af0b92461a | |||
| 89f0354ccc | |||
| 6a267d074b | |||
| bcde33c7d0 | |||
| ee3268fbe0 | |||
| f6a38ffaa8 | |||
| b13ffce0a0 | |||
| b39e01efd7 | |||
| 98eea5b6f9 | |||
| fe36ed91f2 | |||
| 8c85f9ca5f |
@@ -6,7 +6,7 @@
|
||||
},
|
||||
"metadata": {
|
||||
"description": "Project management plugins with Gitea and NetBox integrations",
|
||||
"version": "3.1.0"
|
||||
"version": "4.0.0"
|
||||
},
|
||||
"plugins": [
|
||||
{
|
||||
@@ -149,6 +149,22 @@
|
||||
"category": "development",
|
||||
"tags": ["code-review", "pull-requests", "security", "quality"],
|
||||
"license": "MIT"
|
||||
},
|
||||
{
|
||||
"name": "data-platform",
|
||||
"version": "1.0.0",
|
||||
"description": "Data engineering tools with pandas, PostgreSQL/PostGIS, and dbt integration",
|
||||
"source": "./plugins/data-platform",
|
||||
"author": {
|
||||
"name": "Leo Miranda",
|
||||
"email": "leobmiranda@gmail.com"
|
||||
},
|
||||
"homepage": "https://gitea.hotserv.cloud/personal-projects/leo-claude-mktplace/src/branch/main/plugins/data-platform/README.md",
|
||||
"repository": "https://gitea.hotserv.cloud/personal-projects/leo-claude-mktplace.git",
|
||||
"mcpServers": ["./.mcp.json"],
|
||||
"category": "data",
|
||||
"tags": ["pandas", "postgresql", "postgis", "dbt", "data-engineering", "etl"],
|
||||
"license": "MIT"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
60
CHANGELOG.md
60
CHANGELOG.md
@@ -4,14 +4,52 @@ All notable changes to the Leo Claude Marketplace will be documented in this fil
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
|
||||
|
||||
## [3.1.2] - 2026-01-23
|
||||
## [4.0.0] - 2026-01-25
|
||||
|
||||
### Added
|
||||
|
||||
#### New Plugin: data-platform v1.0.0
|
||||
- **pandas MCP Tools** (14 tools): DataFrame operations with Arrow IPC data_ref persistence
|
||||
- `read_csv`, `read_parquet`, `read_json` - Load data with chunking support
|
||||
- `to_csv`, `to_parquet` - Export to various formats
|
||||
- `describe`, `head`, `tail` - Data exploration
|
||||
- `filter`, `select`, `groupby`, `join` - Data transformation
|
||||
- `list_data`, `drop_data` - Memory management
|
||||
|
||||
- **PostgreSQL MCP Tools** (10 tools): Database operations with asyncpg connection pooling
|
||||
- `pg_connect`, `pg_query`, `pg_execute` - Core database operations
|
||||
- `pg_tables`, `pg_columns`, `pg_schemas` - Schema exploration
|
||||
- `st_tables`, `st_geometry_type`, `st_srid`, `st_extent` - PostGIS spatial support
|
||||
|
||||
- **dbt MCP Tools** (8 tools): Build tool wrapper with pre-execution validation
|
||||
- `dbt_parse` - Pre-flight validation (catches dbt 1.9+ deprecations)
|
||||
- `dbt_run`, `dbt_test`, `dbt_build` - Execution with auto-validation
|
||||
- `dbt_compile`, `dbt_ls`, `dbt_docs_generate`, `dbt_lineage` - Analysis tools
|
||||
|
||||
- **Commands**: `/ingest`, `/profile`, `/schema`, `/explain`, `/lineage`, `/run`
|
||||
- **Agents**: `data-ingestion` (loading/transformation), `data-analysis` (exploration/profiling)
|
||||
- **SessionStart Hook**: Graceful PostgreSQL connection check (non-blocking warning)
|
||||
|
||||
- **Key Features**:
|
||||
- data_ref system for DataFrame persistence across tool calls
|
||||
- 100k row limit with chunking support for large datasets
|
||||
- Hybrid configuration (system: `~/.config/claude/postgres.env`, project: `.env`)
|
||||
- Auto-detection of dbt projects
|
||||
- Arrow IPC format for efficient memory management
|
||||
|
||||
---
|
||||
|
||||
## [3.2.0] - 2026-01-24
|
||||
|
||||
### Added
|
||||
- **git-flow:** `/commit` now detects protected branches before committing
|
||||
- Warns when on protected branch (main, master, development, staging, production)
|
||||
- Offers to create feature branch automatically instead of committing directly
|
||||
- Configurable via `GIT_PROTECTED_BRANCHES` environment variable
|
||||
- Resolves issue where commits to protected branches would fail on push
|
||||
- **netbox:** Platform and primary_ip parameters added to device update tools
|
||||
- **claude-config-maintainer:** Auto-enforce mandatory behavior rules via SessionStart hook
|
||||
- **scripts:** `release.sh` - Versioning workflow script for consistent releases
|
||||
- **scripts:** `verify-hooks.sh` - Verify all hooks are command type
|
||||
|
||||
### Changed
|
||||
- **doc-guardian:** Hook switched from `prompt` type to `command` type
|
||||
@@ -19,14 +57,24 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
|
||||
- New `notify.sh` bash script guarantees exact output behavior
|
||||
- Only notifies for config file changes (commands/, agents/, skills/, hooks/)
|
||||
- Silent exit for all other files - no blocking possible
|
||||
- **All hooks:** Stricter plugin prefix enforcement
|
||||
- All prompts now mandate `[plugin-name]` prefix with "NO EXCEPTIONS" rule
|
||||
- **All hooks:** Converted to command type with stricter plugin prefix enforcement
|
||||
- All hooks now mandate `[plugin-name]` prefix with "NO EXCEPTIONS" rule
|
||||
- Simplified output formats with word limits
|
||||
- Consistent structure across projman, pr-review, code-sentinel, doc-guardian
|
||||
- **CLAUDE.md:** Replaced destructive "ALWAYS CLEAR CACHE" rule with "VERIFY AND RESTART"
|
||||
- Cache clearing mid-session breaks MCP tools
|
||||
- Added guidance for proper plugin development workflow
|
||||
|
||||
### Fixed
|
||||
- Protected branch workflow: Claude no longer commits directly to protected branches and then fails on push (fixes #109)
|
||||
- doc-guardian hook no longer blocks workflow - switched to command hook that can't be overridden by model (fixes #110)
|
||||
- **cmdb-assistant:** Complete MCP tool schemas for update operations (#138)
|
||||
- **netbox:** Shorten tool names to meet 64-char API limit (#134)
|
||||
- **cmdb-assistant:** Correct NetBox API URL format in setup wizard (#132)
|
||||
- **gitea/projman:** Type safety for `create_label_smart`, curl-based debug-report (#124)
|
||||
- **netbox:** Add diagnostic logging for JSON parse errors (#121)
|
||||
- **labels:** Add duplicate check before creating labels (#116)
|
||||
- **hooks:** Convert ALL hooks to command type with proper prefixes (#114)
|
||||
- Protected branch workflow: Claude no longer commits directly to protected branches (fixes #109)
|
||||
- doc-guardian hook no longer blocks workflow (fixes #110)
|
||||
|
||||
---
|
||||
|
||||
|
||||
86
CLAUDE.md
86
CLAUDE.md
@@ -31,11 +31,16 @@ This file provides guidance to Claude Code when working with code in this reposi
|
||||
- If user asks for output, show the OUTPUT
|
||||
- **Don't interpret or summarize unless asked**
|
||||
|
||||
### 5. AFTER PLUGIN UPDATES - ALWAYS CLEAR CACHE
|
||||
```bash
|
||||
rm -rf ~/.claude/plugins/cache/leo-claude-mktplace/
|
||||
./scripts/verify-hooks.sh
|
||||
```
|
||||
### 5. AFTER PLUGIN UPDATES - VERIFY AND RESTART
|
||||
|
||||
**⚠️ DO NOT clear cache mid-session** - this breaks MCP tools that are already loaded.
|
||||
|
||||
1. Run `./scripts/verify-hooks.sh` to check hook types
|
||||
2. If changes affect MCP servers or hooks, inform the user:
|
||||
> "Plugin changes require a session restart to take effect. Please restart Claude Code."
|
||||
3. Cache clearing is ONLY safe **before** starting a new session (not during)
|
||||
|
||||
See `docs/DEBUGGING-CHECKLIST.md` for details on cache timing.
|
||||
|
||||
**FAILURE TO FOLLOW THESE RULES = WASTED USER TIME = UNACCEPTABLE**
|
||||
|
||||
@@ -125,7 +130,9 @@ leo-claude-mktplace/
|
||||
│ └── project-hygiene/
|
||||
├── scripts/
|
||||
│ ├── setup.sh, post-update.sh
|
||||
│ └── validate-marketplace.sh # Marketplace compliance validation
|
||||
│ ├── validate-marketplace.sh # Marketplace compliance validation
|
||||
│ ├── verify-hooks.sh # Verify all hooks are command type
|
||||
│ └── check-venv.sh # Check MCP server venvs exist
|
||||
└── docs/
|
||||
├── CANONICAL-PATHS.md # Single source of truth for paths
|
||||
└── CONFIGURATION.md # Centralized configuration guide
|
||||
@@ -172,12 +179,12 @@ leo-claude-mktplace/
|
||||
|
||||
| Category | Tools |
|
||||
|----------|-------|
|
||||
| Issues | `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment` |
|
||||
| Labels | `get_labels`, `suggest_labels`, `create_label` |
|
||||
| Milestones | `list_milestones`, `get_milestone`, `create_milestone`, `update_milestone` |
|
||||
| Dependencies | `list_issue_dependencies`, `create_issue_dependency`, `get_execution_order` |
|
||||
| Wiki | `list_wiki_pages`, `get_wiki_page`, `create_wiki_page`, `create_lesson`, `search_lessons` |
|
||||
| **Pull Requests** | `list_pull_requests`, `get_pull_request`, `get_pr_diff`, `get_pr_comments`, `create_pr_review`, `add_pr_comment` *(NEW v3.0.0)* |
|
||||
| Issues | `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment`, `aggregate_issues` |
|
||||
| Labels | `get_labels`, `suggest_labels`, `create_label`, `create_label_smart` |
|
||||
| Milestones | `list_milestones`, `get_milestone`, `create_milestone`, `update_milestone`, `delete_milestone` |
|
||||
| Dependencies | `list_issue_dependencies`, `create_issue_dependency`, `remove_issue_dependency`, `get_execution_order` |
|
||||
| Wiki | `list_wiki_pages`, `get_wiki_page`, `create_wiki_page`, `update_wiki_page`, `create_lesson`, `search_lessons` |
|
||||
| **Pull Requests** | `list_pull_requests`, `get_pull_request`, `get_pr_diff`, `get_pr_comments`, `create_pr_review`, `add_pr_comment` |
|
||||
| Validation | `validate_repo_org`, `get_branch_protection` |
|
||||
|
||||
### Hybrid Configuration
|
||||
@@ -286,13 +293,56 @@ See `docs/DEBUGGING-CHECKLIST.md` for systematic troubleshooting.
|
||||
- `/debug-report` - Run full diagnostics, create issue if needed
|
||||
- `/debug-review` - Investigate and propose fixes
|
||||
|
||||
## Versioning Rules
|
||||
## Versioning Workflow
|
||||
|
||||
- Version displayed ONLY in main `README.md` title: `# Leo Claude Marketplace - vX.Y.Z`
|
||||
- `CHANGELOG.md` is authoritative for version history
|
||||
- Follow [SemVer](https://semver.org/): MAJOR.MINOR.PATCH
|
||||
- On release: Update README title → CHANGELOG → marketplace.json → plugin.json files
|
||||
This project follows [SemVer](https://semver.org/) and [Keep a Changelog](https://keepachangelog.com).
|
||||
|
||||
### Version Locations (must stay in sync)
|
||||
|
||||
| Location | Format | Example |
|
||||
|----------|--------|---------|
|
||||
| Git tags | `vX.Y.Z` | `v3.2.0` |
|
||||
| README.md title | `# Leo Claude Marketplace - vX.Y.Z` | `v3.2.0` |
|
||||
| marketplace.json | `"version": "X.Y.Z"` | `3.2.0` |
|
||||
| CHANGELOG.md | `## [X.Y.Z] - YYYY-MM-DD` | `[3.2.0] - 2026-01-24` |
|
||||
|
||||
### During Development
|
||||
|
||||
**All changes go under `[Unreleased]` in CHANGELOG.md.** Never create a versioned section until release time.
|
||||
|
||||
```markdown
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
- New feature description
|
||||
|
||||
### Fixed
|
||||
- Bug fix description
|
||||
```
|
||||
|
||||
### Creating a Release
|
||||
|
||||
Use the release script to ensure consistency:
|
||||
|
||||
```bash
|
||||
./scripts/release.sh 3.2.0
|
||||
```
|
||||
|
||||
The script will:
|
||||
1. Validate `[Unreleased]` section has content
|
||||
2. Replace `[Unreleased]` with `[3.2.0] - YYYY-MM-DD`
|
||||
3. Update README.md title
|
||||
4. Update marketplace.json version
|
||||
5. Commit and create git tag
|
||||
|
||||
### SemVer Guidelines
|
||||
|
||||
| Change Type | Version Bump | Example |
|
||||
|-------------|--------------|---------|
|
||||
| Bug fixes only | PATCH (x.y.**Z**) | 3.1.1 → 3.1.2 |
|
||||
| New features (backwards compatible) | MINOR (x.**Y**.0) | 3.1.2 → 3.2.0 |
|
||||
| Breaking changes | MAJOR (**X**.0.0) | 3.2.0 → 4.0.0 |
|
||||
|
||||
---
|
||||
|
||||
**Last Updated:** 2026-01-23
|
||||
**Last Updated:** 2026-01-24
|
||||
|
||||
52
README.md
52
README.md
@@ -1,4 +1,4 @@
|
||||
# Leo Claude Marketplace - v3.1.1
|
||||
# Leo Claude Marketplace - v4.0.0
|
||||
|
||||
A collection of Claude Code plugins for project management, infrastructure automation, and development workflows.
|
||||
|
||||
@@ -96,6 +96,21 @@ Full CRUD operations for network infrastructure management directly from Claude
|
||||
|
||||
**Commands:** `/initial-setup`, `/cmdb-search`, `/cmdb-device`, `/cmdb-ip`, `/cmdb-site`
|
||||
|
||||
### Data Engineering
|
||||
|
||||
#### [data-platform](./plugins/data-platform/README.md) *NEW*
|
||||
**pandas, PostgreSQL/PostGIS, and dbt Integration**
|
||||
|
||||
Comprehensive data engineering toolkit with persistent DataFrame storage.
|
||||
|
||||
- 14 pandas tools with Arrow IPC data_ref system
|
||||
- 10 PostgreSQL/PostGIS tools with connection pooling
|
||||
- 8 dbt tools with automatic pre-validation
|
||||
- 100k row limit with chunking support
|
||||
- Auto-detection of dbt projects
|
||||
|
||||
**Commands:** `/ingest`, `/profile`, `/schema`, `/explain`, `/lineage`, `/run`
|
||||
|
||||
## MCP Servers
|
||||
|
||||
MCP servers are **shared at repository root** with **symlinks** from plugins that use them.
|
||||
@@ -106,11 +121,11 @@ Full Gitea API integration for project management.
|
||||
|
||||
| Category | Tools |
|
||||
|----------|-------|
|
||||
| Issues | `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment` |
|
||||
| Labels | `get_labels`, `suggest_labels`, `create_label` |
|
||||
| Wiki | `list_wiki_pages`, `get_wiki_page`, `create_wiki_page`, `create_lesson`, `search_lessons` |
|
||||
| Milestones | `list_milestones`, `get_milestone`, `create_milestone`, `update_milestone` |
|
||||
| Dependencies | `list_issue_dependencies`, `create_issue_dependency`, `get_execution_order` |
|
||||
| Issues | `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment`, `aggregate_issues` |
|
||||
| Labels | `get_labels`, `suggest_labels`, `create_label`, `create_label_smart` |
|
||||
| Wiki | `list_wiki_pages`, `get_wiki_page`, `create_wiki_page`, `update_wiki_page`, `create_lesson`, `search_lessons` |
|
||||
| Milestones | `list_milestones`, `get_milestone`, `create_milestone`, `update_milestone`, `delete_milestone` |
|
||||
| Dependencies | `list_issue_dependencies`, `create_issue_dependency`, `remove_issue_dependency`, `get_execution_order` |
|
||||
| **Pull Requests** | `list_pull_requests`, `get_pull_request`, `get_pr_diff`, `get_pr_comments`, `create_pr_review`, `add_pr_comment` *(NEW in v3.0.0)* |
|
||||
| Validation | `validate_repo_org`, `get_branch_protection` |
|
||||
|
||||
@@ -126,6 +141,17 @@ Comprehensive NetBox REST API integration for infrastructure management.
|
||||
| Virtualization | Clusters, VMs, Interfaces |
|
||||
| Extras | Tags, Custom Fields, Audit Log |
|
||||
|
||||
### Data Platform MCP Server (shared) *NEW*
|
||||
|
||||
pandas, PostgreSQL/PostGIS, and dbt integration for data engineering.
|
||||
|
||||
| Category | Tools |
|
||||
|----------|-------|
|
||||
| pandas | `read_csv`, `read_parquet`, `read_json`, `to_csv`, `to_parquet`, `describe`, `head`, `tail`, `filter`, `select`, `groupby`, `join`, `list_data`, `drop_data` |
|
||||
| PostgreSQL | `pg_connect`, `pg_query`, `pg_execute`, `pg_tables`, `pg_columns`, `pg_schemas` |
|
||||
| PostGIS | `st_tables`, `st_geometry_type`, `st_srid`, `st_extent` |
|
||||
| dbt | `dbt_parse`, `dbt_run`, `dbt_test`, `dbt_build`, `dbt_compile`, `dbt_ls`, `dbt_docs_generate`, `dbt_lineage` |
|
||||
|
||||
## Installation
|
||||
|
||||
### Prerequisites
|
||||
@@ -222,6 +248,7 @@ After installing plugins, the `/plugin` command may show `(no content)` - this i
|
||||
| code-sentinel | `/code-sentinel:security-scan` |
|
||||
| claude-config-maintainer | `/claude-config-maintainer:config-analyze` |
|
||||
| cmdb-assistant | `/cmdb-assistant:cmdb-search` |
|
||||
| data-platform | `/data-platform:ingest` |
|
||||
|
||||
## Repository Structure
|
||||
|
||||
@@ -231,12 +258,14 @@ leo-claude-mktplace/
|
||||
│ └── marketplace.json
|
||||
├── mcp-servers/ # SHARED MCP servers (v3.0.0+)
|
||||
│ ├── gitea/ # Gitea MCP (issues, PRs, wiki)
|
||||
│ └── netbox/ # NetBox MCP (CMDB)
|
||||
│ ├── netbox/ # NetBox MCP (CMDB)
|
||||
│ └── data-platform/ # Data engineering (pandas, PostgreSQL, dbt)
|
||||
├── plugins/ # All plugins
|
||||
│ ├── projman/ # Sprint management
|
||||
│ ├── git-flow/ # Git workflow automation (NEW)
|
||||
│ ├── pr-review/ # PR review (NEW)
|
||||
│ ├── clarity-assist/ # Prompt optimization (NEW)
|
||||
│ ├── git-flow/ # Git workflow automation
|
||||
│ ├── pr-review/ # PR review
|
||||
│ ├── clarity-assist/ # Prompt optimization
|
||||
│ ├── data-platform/ # Data engineering (NEW)
|
||||
│ ├── claude-config-maintainer/ # CLAUDE.md optimization
|
||||
│ ├── cmdb-assistant/ # NetBox CMDB integration
|
||||
│ ├── doc-guardian/ # Documentation drift detection
|
||||
@@ -245,7 +274,8 @@ leo-claude-mktplace/
|
||||
├── docs/ # Documentation
|
||||
│ ├── CANONICAL-PATHS.md # Path reference
|
||||
│ └── CONFIGURATION.md # Setup guide
|
||||
└── scripts/ # Setup scripts
|
||||
├── scripts/ # Setup scripts
|
||||
└── CHANGELOG.md # Version history
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
@@ -197,6 +197,51 @@ echo -e "\n=== Config Files ==="
|
||||
|
||||
---
|
||||
|
||||
## Cache Clearing: When It's Safe vs Destructive
|
||||
|
||||
**⚠️ CRITICAL: Never clear plugin cache mid-session.**
|
||||
|
||||
### Why Cache Clearing Breaks MCP Tools
|
||||
|
||||
When Claude Code starts a session:
|
||||
1. MCP tools are loaded from the cache directory
|
||||
2. Tool definitions include **absolute paths** to the venv (e.g., `~/.claude/plugins/cache/.../venv/`)
|
||||
3. These paths are cached in the session memory
|
||||
4. Deleting the cache removes the venv, but the session still references the old paths
|
||||
5. Any MCP tool making HTTP requests fails with TLS certificate errors
|
||||
|
||||
### When Cache Clearing is SAFE
|
||||
|
||||
| Scenario | Safe? | Action |
|
||||
|----------|-------|--------|
|
||||
| Before starting Claude Code | ✅ Yes | Clear cache, then start session |
|
||||
| Between sessions | ✅ Yes | Clear cache after `/exit`, before next session |
|
||||
| During a session | ❌ NO | Never - will break MCP tools |
|
||||
| After plugin source edits | ❌ NO | Restart session instead |
|
||||
|
||||
### Recovery: MCP Tools Broken Mid-Session
|
||||
|
||||
If you accidentally cleared cache during a session and MCP tools fail:
|
||||
|
||||
```
|
||||
Error: Could not find a suitable TLS CA certificate bundle, invalid path:
|
||||
/home/.../.claude/plugins/cache/.../certifi/cacert.pem
|
||||
```
|
||||
|
||||
**Fix:**
|
||||
1. Exit the current session (`/exit` or Ctrl+C)
|
||||
2. Start a new Claude Code session
|
||||
3. MCP tools will reload from the reinstalled cache
|
||||
|
||||
### Correct Workflow for Plugin Development
|
||||
|
||||
1. Make changes to plugin source files
|
||||
2. Run `./scripts/verify-hooks.sh` (verifies hook types)
|
||||
3. Tell user: "Please restart Claude Code for changes to take effect"
|
||||
4. **Do NOT clear cache** - session restart handles reloading
|
||||
|
||||
---
|
||||
|
||||
## Automated Diagnostics
|
||||
|
||||
Use these commands for automated checking:
|
||||
|
||||
131
mcp-servers/data-platform/README.md
Normal file
131
mcp-servers/data-platform/README.md
Normal file
@@ -0,0 +1,131 @@
|
||||
# Data Platform MCP Server
|
||||
|
||||
MCP Server providing pandas, PostgreSQL/PostGIS, and dbt tools for Claude Code.
|
||||
|
||||
## Features
|
||||
|
||||
- **pandas Tools**: DataFrame operations with Arrow IPC data_ref persistence
|
||||
- **PostgreSQL Tools**: Database queries with asyncpg connection pooling
|
||||
- **PostGIS Tools**: Spatial data operations
|
||||
- **dbt Tools**: Build tool wrapper with pre-execution validation
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
cd mcp-servers/data-platform
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### System-Level (PostgreSQL credentials)
|
||||
|
||||
Create `~/.config/claude/postgres.env`:
|
||||
|
||||
```env
|
||||
POSTGRES_URL=postgresql://user:password@host:5432/database
|
||||
```
|
||||
|
||||
### Project-Level (dbt paths)
|
||||
|
||||
Create `.env` in your project root:
|
||||
|
||||
```env
|
||||
DBT_PROJECT_DIR=/path/to/dbt/project
|
||||
DBT_PROFILES_DIR=/path/to/.dbt
|
||||
DATA_PLATFORM_MAX_ROWS=100000
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
### pandas Tools (14 tools)
|
||||
|
||||
| Tool | Description |
|
||||
|------|-------------|
|
||||
| `read_csv` | Load CSV file into DataFrame |
|
||||
| `read_parquet` | Load Parquet file into DataFrame |
|
||||
| `read_json` | Load JSON/JSONL file into DataFrame |
|
||||
| `to_csv` | Export DataFrame to CSV file |
|
||||
| `to_parquet` | Export DataFrame to Parquet file |
|
||||
| `describe` | Get statistical summary of DataFrame |
|
||||
| `head` | Get first N rows of DataFrame |
|
||||
| `tail` | Get last N rows of DataFrame |
|
||||
| `filter` | Filter DataFrame rows by condition |
|
||||
| `select` | Select specific columns from DataFrame |
|
||||
| `groupby` | Group DataFrame and aggregate |
|
||||
| `join` | Join two DataFrames |
|
||||
| `list_data` | List all stored DataFrames |
|
||||
| `drop_data` | Remove a DataFrame from storage |
|
||||
|
||||
### PostgreSQL Tools (6 tools)
|
||||
|
||||
| Tool | Description |
|
||||
|------|-------------|
|
||||
| `pg_connect` | Test connection and return status |
|
||||
| `pg_query` | Execute SELECT, return as data_ref |
|
||||
| `pg_execute` | Execute INSERT/UPDATE/DELETE |
|
||||
| `pg_tables` | List all tables in schema |
|
||||
| `pg_columns` | Get column info for table |
|
||||
| `pg_schemas` | List all schemas |
|
||||
|
||||
### PostGIS Tools (4 tools)
|
||||
|
||||
| Tool | Description |
|
||||
|------|-------------|
|
||||
| `st_tables` | List PostGIS-enabled tables |
|
||||
| `st_geometry_type` | Get geometry type of column |
|
||||
| `st_srid` | Get SRID of geometry column |
|
||||
| `st_extent` | Get bounding box of geometries |
|
||||
|
||||
### dbt Tools (8 tools)
|
||||
|
||||
| Tool | Description |
|
||||
|------|-------------|
|
||||
| `dbt_parse` | Validate project (pre-execution) |
|
||||
| `dbt_run` | Run models with selection |
|
||||
| `dbt_test` | Run tests |
|
||||
| `dbt_build` | Run + test |
|
||||
| `dbt_compile` | Compile SQL without executing |
|
||||
| `dbt_ls` | List resources |
|
||||
| `dbt_docs_generate` | Generate documentation |
|
||||
| `dbt_lineage` | Get model dependencies |
|
||||
|
||||
## data_ref System
|
||||
|
||||
All DataFrame operations use a `data_ref` system to persist data across tool calls:
|
||||
|
||||
1. **Load data**: Returns a `data_ref` string (e.g., `"df_a1b2c3d4"`)
|
||||
2. **Use data_ref**: Pass to other tools (filter, join, export)
|
||||
3. **List data**: Use `list_data` to see all stored DataFrames
|
||||
4. **Clean up**: Use `drop_data` when done
|
||||
|
||||
### Example Flow
|
||||
|
||||
```
|
||||
read_csv("data.csv") → {"data_ref": "sales_data", "rows": 1000}
|
||||
filter("sales_data", "amount > 100") → {"data_ref": "sales_data_filtered"}
|
||||
describe("sales_data_filtered") → {statistics}
|
||||
to_parquet("sales_data_filtered", "output.parquet") → {success}
|
||||
```
|
||||
|
||||
## Memory Management
|
||||
|
||||
- Default row limit: 100,000 rows per DataFrame
|
||||
- Configure via `DATA_PLATFORM_MAX_ROWS` environment variable
|
||||
- Use chunked processing for large files (`chunk_size` parameter)
|
||||
- Monitor with `list_data` tool (shows memory usage)
|
||||
|
||||
## Running
|
||||
|
||||
```bash
|
||||
python -m mcp_server.server
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pytest
|
||||
```
|
||||
7
mcp-servers/data-platform/mcp_server/__init__.py
Normal file
7
mcp-servers/data-platform/mcp_server/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
"""
|
||||
Data Platform MCP Server.
|
||||
|
||||
Provides pandas, PostgreSQL/PostGIS, and dbt tools to Claude Code via MCP.
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
195
mcp-servers/data-platform/mcp_server/config.py
Normal file
195
mcp-servers/data-platform/mcp_server/config.py
Normal file
@@ -0,0 +1,195 @@
|
||||
"""
|
||||
Configuration loader for Data Platform MCP Server.
|
||||
|
||||
Implements hybrid configuration system:
|
||||
- System-level: ~/.config/claude/postgres.env (credentials)
|
||||
- Project-level: .env (dbt project paths, overrides)
|
||||
- Auto-detection: dbt_project.yml discovery
|
||||
"""
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
import logging
|
||||
from typing import Dict, Optional
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DataPlatformConfig:
|
||||
"""Hybrid configuration loader for data platform tools"""
|
||||
|
||||
def __init__(self):
|
||||
self.postgres_url: Optional[str] = None
|
||||
self.dbt_project_dir: Optional[str] = None
|
||||
self.dbt_profiles_dir: Optional[str] = None
|
||||
self.max_rows: int = 100_000
|
||||
|
||||
def load(self) -> Dict[str, Optional[str]]:
|
||||
"""
|
||||
Load configuration from system and project levels.
|
||||
|
||||
Returns:
|
||||
Dict containing postgres_url, dbt_project_dir, dbt_profiles_dir, max_rows
|
||||
|
||||
Note:
|
||||
PostgreSQL credentials are optional - server can run in pandas-only mode.
|
||||
"""
|
||||
# Load system config (PostgreSQL credentials)
|
||||
system_config = Path.home() / '.config' / 'claude' / 'postgres.env'
|
||||
if system_config.exists():
|
||||
load_dotenv(system_config)
|
||||
logger.info(f"Loaded system configuration from {system_config}")
|
||||
else:
|
||||
logger.info(
|
||||
f"System config not found: {system_config} - "
|
||||
"PostgreSQL tools will be unavailable"
|
||||
)
|
||||
|
||||
# Find project directory
|
||||
project_dir = self._find_project_directory()
|
||||
|
||||
# Load project config (overrides system)
|
||||
if project_dir:
|
||||
project_config = project_dir / '.env'
|
||||
if project_config.exists():
|
||||
load_dotenv(project_config, override=True)
|
||||
logger.info(f"Loaded project configuration from {project_config}")
|
||||
|
||||
# Extract values
|
||||
self.postgres_url = os.getenv('POSTGRES_URL')
|
||||
self.dbt_project_dir = os.getenv('DBT_PROJECT_DIR')
|
||||
self.dbt_profiles_dir = os.getenv('DBT_PROFILES_DIR')
|
||||
self.max_rows = int(os.getenv('DATA_PLATFORM_MAX_ROWS', '100000'))
|
||||
|
||||
# Auto-detect dbt project if not specified
|
||||
if not self.dbt_project_dir and project_dir:
|
||||
self.dbt_project_dir = self._find_dbt_project(project_dir)
|
||||
if self.dbt_project_dir:
|
||||
logger.info(f"Auto-detected dbt project: {self.dbt_project_dir}")
|
||||
|
||||
# Default dbt profiles dir to ~/.dbt
|
||||
if not self.dbt_profiles_dir:
|
||||
default_profiles = Path.home() / '.dbt'
|
||||
if default_profiles.exists():
|
||||
self.dbt_profiles_dir = str(default_profiles)
|
||||
|
||||
return {
|
||||
'postgres_url': self.postgres_url,
|
||||
'dbt_project_dir': self.dbt_project_dir,
|
||||
'dbt_profiles_dir': self.dbt_profiles_dir,
|
||||
'max_rows': self.max_rows,
|
||||
'postgres_available': self.postgres_url is not None,
|
||||
'dbt_available': self.dbt_project_dir is not None
|
||||
}
|
||||
|
||||
def _find_project_directory(self) -> Optional[Path]:
|
||||
"""
|
||||
Find the user's project directory.
|
||||
|
||||
Returns:
|
||||
Path to project directory, or None if not found
|
||||
"""
|
||||
# Strategy 1: Check CLAUDE_PROJECT_DIR environment variable
|
||||
project_dir = os.getenv('CLAUDE_PROJECT_DIR')
|
||||
if project_dir:
|
||||
path = Path(project_dir)
|
||||
if path.exists():
|
||||
logger.info(f"Found project directory from CLAUDE_PROJECT_DIR: {path}")
|
||||
return path
|
||||
|
||||
# Strategy 2: Check PWD
|
||||
pwd = os.getenv('PWD')
|
||||
if pwd:
|
||||
path = Path(pwd)
|
||||
if path.exists() and (
|
||||
(path / '.git').exists() or
|
||||
(path / '.env').exists() or
|
||||
(path / 'dbt_project.yml').exists()
|
||||
):
|
||||
logger.info(f"Found project directory from PWD: {path}")
|
||||
return path
|
||||
|
||||
# Strategy 3: Check current working directory
|
||||
cwd = Path.cwd()
|
||||
if (cwd / '.git').exists() or (cwd / '.env').exists() or (cwd / 'dbt_project.yml').exists():
|
||||
logger.info(f"Found project directory from cwd: {cwd}")
|
||||
return cwd
|
||||
|
||||
logger.debug("Could not determine project directory")
|
||||
return None
|
||||
|
||||
def _find_dbt_project(self, start_dir: Path) -> Optional[str]:
|
||||
"""
|
||||
Find dbt_project.yml in the project or its subdirectories.
|
||||
|
||||
Args:
|
||||
start_dir: Directory to start searching from
|
||||
|
||||
Returns:
|
||||
Path to dbt project directory, or None if not found
|
||||
"""
|
||||
# Check root
|
||||
if (start_dir / 'dbt_project.yml').exists():
|
||||
return str(start_dir)
|
||||
|
||||
# Check common subdirectories
|
||||
for subdir in ['dbt', 'transform', 'analytics', 'models']:
|
||||
candidate = start_dir / subdir
|
||||
if (candidate / 'dbt_project.yml').exists():
|
||||
return str(candidate)
|
||||
|
||||
# Search one level deep
|
||||
for item in start_dir.iterdir():
|
||||
if item.is_dir() and not item.name.startswith('.'):
|
||||
if (item / 'dbt_project.yml').exists():
|
||||
return str(item)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def load_config() -> Dict[str, Optional[str]]:
|
||||
"""
|
||||
Convenience function to load configuration.
|
||||
|
||||
Returns:
|
||||
Configuration dictionary
|
||||
"""
|
||||
config = DataPlatformConfig()
|
||||
return config.load()
|
||||
|
||||
|
||||
def check_postgres_connection() -> Dict[str, any]:
|
||||
"""
|
||||
Check PostgreSQL connection status for SessionStart hook.
|
||||
|
||||
Returns:
|
||||
Dict with connection status and message
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
config = load_config()
|
||||
if not config.get('postgres_url'):
|
||||
return {
|
||||
'connected': False,
|
||||
'message': 'PostgreSQL not configured (POSTGRES_URL not set)'
|
||||
}
|
||||
|
||||
async def test_connection():
|
||||
try:
|
||||
import asyncpg
|
||||
conn = await asyncpg.connect(config['postgres_url'], timeout=5)
|
||||
version = await conn.fetchval('SELECT version()')
|
||||
await conn.close()
|
||||
return {
|
||||
'connected': True,
|
||||
'message': f'Connected to PostgreSQL',
|
||||
'version': version.split(',')[0] if version else 'Unknown'
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
'connected': False,
|
||||
'message': f'PostgreSQL connection failed: {str(e)}'
|
||||
}
|
||||
|
||||
return asyncio.run(test_connection())
|
||||
219
mcp-servers/data-platform/mcp_server/data_store.py
Normal file
219
mcp-servers/data-platform/mcp_server/data_store.py
Normal file
@@ -0,0 +1,219 @@
|
||||
"""
|
||||
Arrow IPC DataFrame Registry.
|
||||
|
||||
Provides persistent storage for DataFrames across tool calls using Apache Arrow
|
||||
for efficient memory management and serialization.
|
||||
"""
|
||||
import pyarrow as pa
|
||||
import pandas as pd
|
||||
import uuid
|
||||
import logging
|
||||
from typing import Dict, Optional, List, Union
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataFrameInfo:
|
||||
"""Metadata about a stored DataFrame"""
|
||||
ref: str
|
||||
rows: int
|
||||
columns: int
|
||||
column_names: List[str]
|
||||
dtypes: Dict[str, str]
|
||||
memory_bytes: int
|
||||
created_at: datetime
|
||||
source: Optional[str] = None
|
||||
|
||||
|
||||
class DataStore:
|
||||
"""
|
||||
Singleton registry for Arrow Tables (DataFrames).
|
||||
|
||||
Uses Arrow IPC format for efficient memory usage and supports
|
||||
data_ref based retrieval across multiple tool calls.
|
||||
"""
|
||||
_instance = None
|
||||
_dataframes: Dict[str, pa.Table] = {}
|
||||
_metadata: Dict[str, DataFrameInfo] = {}
|
||||
_max_rows: int = 100_000
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
cls._dataframes = {}
|
||||
cls._metadata = {}
|
||||
return cls._instance
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls) -> 'DataStore':
|
||||
"""Get the singleton instance"""
|
||||
if cls._instance is None:
|
||||
cls._instance = cls()
|
||||
return cls._instance
|
||||
|
||||
@classmethod
|
||||
def set_max_rows(cls, max_rows: int):
|
||||
"""Set the maximum rows limit"""
|
||||
cls._max_rows = max_rows
|
||||
|
||||
def store(
|
||||
self,
|
||||
data: Union[pa.Table, pd.DataFrame],
|
||||
name: Optional[str] = None,
|
||||
source: Optional[str] = None
|
||||
) -> str:
|
||||
"""
|
||||
Store a DataFrame and return its reference.
|
||||
|
||||
Args:
|
||||
data: Arrow Table or pandas DataFrame
|
||||
name: Optional name for the reference (auto-generated if not provided)
|
||||
source: Optional source description (e.g., file path, query)
|
||||
|
||||
Returns:
|
||||
data_ref string to retrieve the DataFrame later
|
||||
"""
|
||||
# Convert pandas to Arrow if needed
|
||||
if isinstance(data, pd.DataFrame):
|
||||
table = pa.Table.from_pandas(data)
|
||||
else:
|
||||
table = data
|
||||
|
||||
# Generate reference
|
||||
data_ref = name or f"df_{uuid.uuid4().hex[:8]}"
|
||||
|
||||
# Ensure unique reference
|
||||
if data_ref in self._dataframes and name is None:
|
||||
data_ref = f"{data_ref}_{uuid.uuid4().hex[:4]}"
|
||||
|
||||
# Store table
|
||||
self._dataframes[data_ref] = table
|
||||
|
||||
# Store metadata
|
||||
schema = table.schema
|
||||
self._metadata[data_ref] = DataFrameInfo(
|
||||
ref=data_ref,
|
||||
rows=table.num_rows,
|
||||
columns=table.num_columns,
|
||||
column_names=[f.name for f in schema],
|
||||
dtypes={f.name: str(f.type) for f in schema},
|
||||
memory_bytes=table.nbytes,
|
||||
created_at=datetime.now(),
|
||||
source=source
|
||||
)
|
||||
|
||||
logger.info(f"Stored DataFrame '{data_ref}': {table.num_rows} rows, {table.num_columns} cols")
|
||||
return data_ref
|
||||
|
||||
def get(self, data_ref: str) -> Optional[pa.Table]:
|
||||
"""
|
||||
Retrieve an Arrow Table by reference.
|
||||
|
||||
Args:
|
||||
data_ref: Reference string from store()
|
||||
|
||||
Returns:
|
||||
Arrow Table or None if not found
|
||||
"""
|
||||
return self._dataframes.get(data_ref)
|
||||
|
||||
def get_pandas(self, data_ref: str) -> Optional[pd.DataFrame]:
|
||||
"""
|
||||
Retrieve a DataFrame as pandas.
|
||||
|
||||
Args:
|
||||
data_ref: Reference string from store()
|
||||
|
||||
Returns:
|
||||
pandas DataFrame or None if not found
|
||||
"""
|
||||
table = self.get(data_ref)
|
||||
if table is not None:
|
||||
return table.to_pandas()
|
||||
return None
|
||||
|
||||
def get_info(self, data_ref: str) -> Optional[DataFrameInfo]:
|
||||
"""
|
||||
Get metadata about a stored DataFrame.
|
||||
|
||||
Args:
|
||||
data_ref: Reference string
|
||||
|
||||
Returns:
|
||||
DataFrameInfo or None if not found
|
||||
"""
|
||||
return self._metadata.get(data_ref)
|
||||
|
||||
def list_refs(self) -> List[Dict]:
|
||||
"""
|
||||
List all stored DataFrame references with metadata.
|
||||
|
||||
Returns:
|
||||
List of dicts with ref, rows, columns, memory info
|
||||
"""
|
||||
result = []
|
||||
for ref, info in self._metadata.items():
|
||||
result.append({
|
||||
'ref': ref,
|
||||
'rows': info.rows,
|
||||
'columns': info.columns,
|
||||
'column_names': info.column_names,
|
||||
'memory_mb': round(info.memory_bytes / (1024 * 1024), 2),
|
||||
'source': info.source,
|
||||
'created_at': info.created_at.isoformat()
|
||||
})
|
||||
return result
|
||||
|
||||
def drop(self, data_ref: str) -> bool:
|
||||
"""
|
||||
Remove a DataFrame from the store.
|
||||
|
||||
Args:
|
||||
data_ref: Reference string
|
||||
|
||||
Returns:
|
||||
True if removed, False if not found
|
||||
"""
|
||||
if data_ref in self._dataframes:
|
||||
del self._dataframes[data_ref]
|
||||
del self._metadata[data_ref]
|
||||
logger.info(f"Dropped DataFrame '{data_ref}'")
|
||||
return True
|
||||
return False
|
||||
|
||||
def clear(self):
|
||||
"""Remove all stored DataFrames"""
|
||||
count = len(self._dataframes)
|
||||
self._dataframes.clear()
|
||||
self._metadata.clear()
|
||||
logger.info(f"Cleared {count} DataFrames from store")
|
||||
|
||||
def total_memory_bytes(self) -> int:
|
||||
"""Get total memory used by all stored DataFrames"""
|
||||
return sum(info.memory_bytes for info in self._metadata.values())
|
||||
|
||||
def total_memory_mb(self) -> float:
|
||||
"""Get total memory in MB"""
|
||||
return round(self.total_memory_bytes() / (1024 * 1024), 2)
|
||||
|
||||
def check_row_limit(self, row_count: int) -> Dict:
|
||||
"""
|
||||
Check if row count exceeds limit.
|
||||
|
||||
Args:
|
||||
row_count: Number of rows
|
||||
|
||||
Returns:
|
||||
Dict with 'exceeded' bool and 'message' if exceeded
|
||||
"""
|
||||
if row_count > self._max_rows:
|
||||
return {
|
||||
'exceeded': True,
|
||||
'message': f"Row count ({row_count:,}) exceeds limit ({self._max_rows:,})",
|
||||
'suggestion': f"Use chunked processing or filter data first",
|
||||
'limit': self._max_rows
|
||||
}
|
||||
return {'exceeded': False}
|
||||
387
mcp-servers/data-platform/mcp_server/dbt_tools.py
Normal file
387
mcp-servers/data-platform/mcp_server/dbt_tools.py
Normal file
@@ -0,0 +1,387 @@
|
||||
"""
|
||||
dbt MCP Tools.
|
||||
|
||||
Provides dbt CLI wrapper with pre-execution validation.
|
||||
"""
|
||||
import subprocess
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Any
|
||||
|
||||
from .config import load_config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DbtTools:
|
||||
"""dbt CLI wrapper tools with pre-validation"""
|
||||
|
||||
def __init__(self):
|
||||
self.config = load_config()
|
||||
self.project_dir = self.config.get('dbt_project_dir')
|
||||
self.profiles_dir = self.config.get('dbt_profiles_dir')
|
||||
|
||||
def _get_dbt_command(self, cmd: List[str]) -> List[str]:
|
||||
"""Build dbt command with project and profiles directories"""
|
||||
base = ['dbt']
|
||||
if self.project_dir:
|
||||
base.extend(['--project-dir', self.project_dir])
|
||||
if self.profiles_dir:
|
||||
base.extend(['--profiles-dir', self.profiles_dir])
|
||||
base.extend(cmd)
|
||||
return base
|
||||
|
||||
def _run_dbt(
|
||||
self,
|
||||
cmd: List[str],
|
||||
timeout: int = 300,
|
||||
capture_json: bool = False
|
||||
) -> Dict:
|
||||
"""
|
||||
Run dbt command and return result.
|
||||
|
||||
Args:
|
||||
cmd: dbt subcommand and arguments
|
||||
timeout: Command timeout in seconds
|
||||
capture_json: If True, parse JSON output
|
||||
|
||||
Returns:
|
||||
Dict with command result
|
||||
"""
|
||||
if not self.project_dir:
|
||||
return {
|
||||
'error': 'dbt project not found',
|
||||
'suggestion': 'Set DBT_PROJECT_DIR in project .env or ensure dbt_project.yml exists'
|
||||
}
|
||||
|
||||
full_cmd = self._get_dbt_command(cmd)
|
||||
logger.info(f"Running: {' '.join(full_cmd)}")
|
||||
|
||||
try:
|
||||
env = os.environ.copy()
|
||||
# Disable dbt analytics/tracking
|
||||
env['DBT_SEND_ANONYMOUS_USAGE_STATS'] = 'false'
|
||||
|
||||
result = subprocess.run(
|
||||
full_cmd,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=timeout,
|
||||
cwd=self.project_dir,
|
||||
env=env
|
||||
)
|
||||
|
||||
output = {
|
||||
'success': result.returncode == 0,
|
||||
'command': ' '.join(cmd),
|
||||
'stdout': result.stdout,
|
||||
'stderr': result.stderr if result.returncode != 0 else None
|
||||
}
|
||||
|
||||
if capture_json and result.returncode == 0:
|
||||
try:
|
||||
output['data'] = json.loads(result.stdout)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
return output
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
return {
|
||||
'error': f'Command timed out after {timeout}s',
|
||||
'command': ' '.join(cmd)
|
||||
}
|
||||
except FileNotFoundError:
|
||||
return {
|
||||
'error': 'dbt not found in PATH',
|
||||
'suggestion': 'Install dbt: pip install dbt-core dbt-postgres'
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"dbt command failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def dbt_parse(self) -> Dict:
|
||||
"""
|
||||
Validate dbt project without executing (pre-flight check).
|
||||
|
||||
Returns:
|
||||
Dict with validation result and any errors
|
||||
"""
|
||||
result = self._run_dbt(['parse'])
|
||||
|
||||
# Check if _run_dbt returned an error (e.g., project not found, timeout, dbt not installed)
|
||||
if 'error' in result:
|
||||
return result
|
||||
|
||||
if not result.get('success'):
|
||||
# Extract useful error info from stderr
|
||||
stderr = result.get('stderr', '') or result.get('stdout', '')
|
||||
errors = []
|
||||
|
||||
# Look for common dbt 1.9+ deprecation warnings
|
||||
if 'deprecated' in stderr.lower():
|
||||
errors.append({
|
||||
'type': 'deprecation',
|
||||
'message': 'Deprecated syntax found - check dbt 1.9+ migration guide'
|
||||
})
|
||||
|
||||
# Look for compilation errors
|
||||
if 'compilation error' in stderr.lower():
|
||||
errors.append({
|
||||
'type': 'compilation',
|
||||
'message': 'SQL compilation error - check model syntax'
|
||||
})
|
||||
|
||||
return {
|
||||
'valid': False,
|
||||
'errors': errors,
|
||||
'details': stderr[:2000] if stderr else None,
|
||||
'suggestion': 'Fix issues before running dbt models'
|
||||
}
|
||||
|
||||
return {
|
||||
'valid': True,
|
||||
'message': 'dbt project validation passed'
|
||||
}
|
||||
|
||||
async def dbt_run(
|
||||
self,
|
||||
select: Optional[str] = None,
|
||||
exclude: Optional[str] = None,
|
||||
full_refresh: bool = False
|
||||
) -> Dict:
|
||||
"""
|
||||
Run dbt models with pre-validation.
|
||||
|
||||
Args:
|
||||
select: Model selection (e.g., "model_name", "+model_name", "tag:daily")
|
||||
exclude: Models to exclude
|
||||
full_refresh: If True, rebuild incremental models
|
||||
|
||||
Returns:
|
||||
Dict with run result
|
||||
"""
|
||||
# ALWAYS validate first
|
||||
parse_result = await self.dbt_parse()
|
||||
if not parse_result.get('valid'):
|
||||
return {
|
||||
'error': 'Pre-validation failed',
|
||||
**parse_result
|
||||
}
|
||||
|
||||
cmd = ['run']
|
||||
if select:
|
||||
cmd.extend(['--select', select])
|
||||
if exclude:
|
||||
cmd.extend(['--exclude', exclude])
|
||||
if full_refresh:
|
||||
cmd.append('--full-refresh')
|
||||
|
||||
return self._run_dbt(cmd)
|
||||
|
||||
async def dbt_test(
|
||||
self,
|
||||
select: Optional[str] = None,
|
||||
exclude: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Run dbt tests.
|
||||
|
||||
Args:
|
||||
select: Test selection
|
||||
exclude: Tests to exclude
|
||||
|
||||
Returns:
|
||||
Dict with test results
|
||||
"""
|
||||
cmd = ['test']
|
||||
if select:
|
||||
cmd.extend(['--select', select])
|
||||
if exclude:
|
||||
cmd.extend(['--exclude', exclude])
|
||||
|
||||
return self._run_dbt(cmd)
|
||||
|
||||
async def dbt_build(
|
||||
self,
|
||||
select: Optional[str] = None,
|
||||
exclude: Optional[str] = None,
|
||||
full_refresh: bool = False
|
||||
) -> Dict:
|
||||
"""
|
||||
Run dbt build (run + test) with pre-validation.
|
||||
|
||||
Args:
|
||||
select: Model/test selection
|
||||
exclude: Resources to exclude
|
||||
full_refresh: If True, rebuild incremental models
|
||||
|
||||
Returns:
|
||||
Dict with build result
|
||||
"""
|
||||
# ALWAYS validate first
|
||||
parse_result = await self.dbt_parse()
|
||||
if not parse_result.get('valid'):
|
||||
return {
|
||||
'error': 'Pre-validation failed',
|
||||
**parse_result
|
||||
}
|
||||
|
||||
cmd = ['build']
|
||||
if select:
|
||||
cmd.extend(['--select', select])
|
||||
if exclude:
|
||||
cmd.extend(['--exclude', exclude])
|
||||
if full_refresh:
|
||||
cmd.append('--full-refresh')
|
||||
|
||||
return self._run_dbt(cmd)
|
||||
|
||||
async def dbt_compile(
|
||||
self,
|
||||
select: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Compile dbt models to SQL without executing.
|
||||
|
||||
Args:
|
||||
select: Model selection
|
||||
|
||||
Returns:
|
||||
Dict with compiled SQL info
|
||||
"""
|
||||
cmd = ['compile']
|
||||
if select:
|
||||
cmd.extend(['--select', select])
|
||||
|
||||
return self._run_dbt(cmd)
|
||||
|
||||
async def dbt_ls(
|
||||
self,
|
||||
select: Optional[str] = None,
|
||||
resource_type: Optional[str] = None,
|
||||
output: str = 'name'
|
||||
) -> Dict:
|
||||
"""
|
||||
List dbt resources.
|
||||
|
||||
Args:
|
||||
select: Resource selection
|
||||
resource_type: Filter by type (model, test, seed, snapshot, source)
|
||||
output: Output format ('name', 'path', 'json')
|
||||
|
||||
Returns:
|
||||
Dict with list of resources
|
||||
"""
|
||||
cmd = ['ls', '--output', output]
|
||||
if select:
|
||||
cmd.extend(['--select', select])
|
||||
if resource_type:
|
||||
cmd.extend(['--resource-type', resource_type])
|
||||
|
||||
result = self._run_dbt(cmd)
|
||||
|
||||
if result.get('success') and result.get('stdout'):
|
||||
lines = [l.strip() for l in result['stdout'].split('\n') if l.strip()]
|
||||
result['resources'] = lines
|
||||
result['count'] = len(lines)
|
||||
|
||||
return result
|
||||
|
||||
async def dbt_docs_generate(self) -> Dict:
|
||||
"""
|
||||
Generate dbt documentation.
|
||||
|
||||
Returns:
|
||||
Dict with generation result
|
||||
"""
|
||||
result = self._run_dbt(['docs', 'generate'])
|
||||
|
||||
if result.get('success') and self.project_dir:
|
||||
# Check for generated catalog
|
||||
catalog_path = Path(self.project_dir) / 'target' / 'catalog.json'
|
||||
manifest_path = Path(self.project_dir) / 'target' / 'manifest.json'
|
||||
result['catalog_generated'] = catalog_path.exists()
|
||||
result['manifest_generated'] = manifest_path.exists()
|
||||
|
||||
return result
|
||||
|
||||
async def dbt_lineage(self, model: str) -> Dict:
|
||||
"""
|
||||
Get model dependencies and lineage.
|
||||
|
||||
Args:
|
||||
model: Model name to analyze
|
||||
|
||||
Returns:
|
||||
Dict with upstream and downstream dependencies
|
||||
"""
|
||||
if not self.project_dir:
|
||||
return {'error': 'dbt project not found'}
|
||||
|
||||
manifest_path = Path(self.project_dir) / 'target' / 'manifest.json'
|
||||
|
||||
# Generate manifest if not exists
|
||||
if not manifest_path.exists():
|
||||
compile_result = await self.dbt_compile(select=model)
|
||||
if not compile_result.get('success'):
|
||||
return {
|
||||
'error': 'Failed to compile manifest',
|
||||
'details': compile_result
|
||||
}
|
||||
|
||||
if not manifest_path.exists():
|
||||
return {
|
||||
'error': 'Manifest not found',
|
||||
'suggestion': 'Run dbt compile first'
|
||||
}
|
||||
|
||||
try:
|
||||
with open(manifest_path) as f:
|
||||
manifest = json.load(f)
|
||||
|
||||
# Find the model node
|
||||
model_key = None
|
||||
for key in manifest.get('nodes', {}):
|
||||
if key.endswith(f'.{model}') or manifest['nodes'][key].get('name') == model:
|
||||
model_key = key
|
||||
break
|
||||
|
||||
if not model_key:
|
||||
return {
|
||||
'error': f'Model not found: {model}',
|
||||
'available_models': [
|
||||
n.get('name') for n in manifest.get('nodes', {}).values()
|
||||
if n.get('resource_type') == 'model'
|
||||
][:20]
|
||||
}
|
||||
|
||||
node = manifest['nodes'][model_key]
|
||||
|
||||
# Get upstream (depends_on)
|
||||
upstream = node.get('depends_on', {}).get('nodes', [])
|
||||
|
||||
# Get downstream (find nodes that depend on this one)
|
||||
downstream = []
|
||||
for key, other_node in manifest.get('nodes', {}).items():
|
||||
deps = other_node.get('depends_on', {}).get('nodes', [])
|
||||
if model_key in deps:
|
||||
downstream.append(key)
|
||||
|
||||
return {
|
||||
'model': model,
|
||||
'unique_id': model_key,
|
||||
'materialization': node.get('config', {}).get('materialized'),
|
||||
'schema': node.get('schema'),
|
||||
'database': node.get('database'),
|
||||
'upstream': upstream,
|
||||
'downstream': downstream,
|
||||
'description': node.get('description'),
|
||||
'tags': node.get('tags', [])
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"dbt_lineage failed: {e}")
|
||||
return {'error': str(e)}
|
||||
500
mcp-servers/data-platform/mcp_server/pandas_tools.py
Normal file
500
mcp-servers/data-platform/mcp_server/pandas_tools.py
Normal file
@@ -0,0 +1,500 @@
|
||||
"""
|
||||
pandas MCP Tools.
|
||||
|
||||
Provides DataFrame operations with Arrow IPC data_ref persistence.
|
||||
"""
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pyarrow.parquet as pq
|
||||
import json
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Any, Union
|
||||
|
||||
from .data_store import DataStore
|
||||
from .config import load_config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PandasTools:
|
||||
"""pandas data manipulation tools with data_ref persistence"""
|
||||
|
||||
def __init__(self):
|
||||
self.store = DataStore.get_instance()
|
||||
config = load_config()
|
||||
self.max_rows = config.get('max_rows', 100_000)
|
||||
self.store.set_max_rows(self.max_rows)
|
||||
|
||||
def _check_and_store(
|
||||
self,
|
||||
df: pd.DataFrame,
|
||||
name: Optional[str] = None,
|
||||
source: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""Check row limit and store DataFrame if within limits"""
|
||||
check = self.store.check_row_limit(len(df))
|
||||
if check['exceeded']:
|
||||
return {
|
||||
'error': 'row_limit_exceeded',
|
||||
**check,
|
||||
'preview': df.head(100).to_dict(orient='records')
|
||||
}
|
||||
|
||||
data_ref = self.store.store(df, name=name, source=source)
|
||||
return {
|
||||
'data_ref': data_ref,
|
||||
'rows': len(df),
|
||||
'columns': list(df.columns),
|
||||
'dtypes': {col: str(dtype) for col, dtype in df.dtypes.items()}
|
||||
}
|
||||
|
||||
async def read_csv(
|
||||
self,
|
||||
file_path: str,
|
||||
name: Optional[str] = None,
|
||||
chunk_size: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> Dict:
|
||||
"""
|
||||
Load CSV file into DataFrame.
|
||||
|
||||
Args:
|
||||
file_path: Path to CSV file
|
||||
name: Optional name for data_ref
|
||||
chunk_size: If provided, process in chunks
|
||||
**kwargs: Additional pandas read_csv arguments
|
||||
|
||||
Returns:
|
||||
Dict with data_ref or error info
|
||||
"""
|
||||
path = Path(file_path)
|
||||
if not path.exists():
|
||||
return {'error': f'File not found: {file_path}'}
|
||||
|
||||
try:
|
||||
if chunk_size:
|
||||
# Chunked processing - return iterator info
|
||||
chunks = []
|
||||
for i, chunk in enumerate(pd.read_csv(path, chunksize=chunk_size, **kwargs)):
|
||||
chunk_ref = self.store.store(chunk, name=f"{name or 'chunk'}_{i}", source=file_path)
|
||||
chunks.append({'ref': chunk_ref, 'rows': len(chunk)})
|
||||
return {
|
||||
'chunked': True,
|
||||
'chunks': chunks,
|
||||
'total_chunks': len(chunks)
|
||||
}
|
||||
|
||||
df = pd.read_csv(path, **kwargs)
|
||||
return self._check_and_store(df, name=name, source=file_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"read_csv failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def read_parquet(
|
||||
self,
|
||||
file_path: str,
|
||||
name: Optional[str] = None,
|
||||
columns: Optional[List[str]] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Load Parquet file into DataFrame.
|
||||
|
||||
Args:
|
||||
file_path: Path to Parquet file
|
||||
name: Optional name for data_ref
|
||||
columns: Optional list of columns to load
|
||||
|
||||
Returns:
|
||||
Dict with data_ref or error info
|
||||
"""
|
||||
path = Path(file_path)
|
||||
if not path.exists():
|
||||
return {'error': f'File not found: {file_path}'}
|
||||
|
||||
try:
|
||||
table = pq.read_table(path, columns=columns)
|
||||
df = table.to_pandas()
|
||||
return self._check_and_store(df, name=name, source=file_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"read_parquet failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def read_json(
|
||||
self,
|
||||
file_path: str,
|
||||
name: Optional[str] = None,
|
||||
lines: bool = False,
|
||||
**kwargs
|
||||
) -> Dict:
|
||||
"""
|
||||
Load JSON/JSONL file into DataFrame.
|
||||
|
||||
Args:
|
||||
file_path: Path to JSON file
|
||||
name: Optional name for data_ref
|
||||
lines: If True, read as JSON Lines format
|
||||
**kwargs: Additional pandas read_json arguments
|
||||
|
||||
Returns:
|
||||
Dict with data_ref or error info
|
||||
"""
|
||||
path = Path(file_path)
|
||||
if not path.exists():
|
||||
return {'error': f'File not found: {file_path}'}
|
||||
|
||||
try:
|
||||
df = pd.read_json(path, lines=lines, **kwargs)
|
||||
return self._check_and_store(df, name=name, source=file_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"read_json failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def to_csv(
|
||||
self,
|
||||
data_ref: str,
|
||||
file_path: str,
|
||||
index: bool = False,
|
||||
**kwargs
|
||||
) -> Dict:
|
||||
"""
|
||||
Export DataFrame to CSV file.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
file_path: Output file path
|
||||
index: Whether to include index
|
||||
**kwargs: Additional pandas to_csv arguments
|
||||
|
||||
Returns:
|
||||
Dict with success status
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
df.to_csv(file_path, index=index, **kwargs)
|
||||
return {
|
||||
'success': True,
|
||||
'file_path': file_path,
|
||||
'rows': len(df),
|
||||
'size_bytes': Path(file_path).stat().st_size
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"to_csv failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def to_parquet(
|
||||
self,
|
||||
data_ref: str,
|
||||
file_path: str,
|
||||
compression: str = 'snappy'
|
||||
) -> Dict:
|
||||
"""
|
||||
Export DataFrame to Parquet file.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
file_path: Output file path
|
||||
compression: Compression codec
|
||||
|
||||
Returns:
|
||||
Dict with success status
|
||||
"""
|
||||
table = self.store.get(data_ref)
|
||||
if table is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
pq.write_table(table, file_path, compression=compression)
|
||||
return {
|
||||
'success': True,
|
||||
'file_path': file_path,
|
||||
'rows': table.num_rows,
|
||||
'size_bytes': Path(file_path).stat().st_size
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"to_parquet failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def describe(self, data_ref: str) -> Dict:
|
||||
"""
|
||||
Get statistical summary of DataFrame.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
|
||||
Returns:
|
||||
Dict with statistical summary
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
desc = df.describe(include='all')
|
||||
info = self.store.get_info(data_ref)
|
||||
|
||||
return {
|
||||
'data_ref': data_ref,
|
||||
'shape': {'rows': len(df), 'columns': len(df.columns)},
|
||||
'columns': list(df.columns),
|
||||
'dtypes': {col: str(dtype) for col, dtype in df.dtypes.items()},
|
||||
'memory_mb': info.memory_bytes / (1024 * 1024) if info else None,
|
||||
'null_counts': df.isnull().sum().to_dict(),
|
||||
'statistics': desc.to_dict()
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"describe failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def head(self, data_ref: str, n: int = 10) -> Dict:
|
||||
"""
|
||||
Get first N rows of DataFrame.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
n: Number of rows
|
||||
|
||||
Returns:
|
||||
Dict with rows as records
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
head_df = df.head(n)
|
||||
return {
|
||||
'data_ref': data_ref,
|
||||
'total_rows': len(df),
|
||||
'returned_rows': len(head_df),
|
||||
'columns': list(df.columns),
|
||||
'data': head_df.to_dict(orient='records')
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"head failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def tail(self, data_ref: str, n: int = 10) -> Dict:
|
||||
"""
|
||||
Get last N rows of DataFrame.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
n: Number of rows
|
||||
|
||||
Returns:
|
||||
Dict with rows as records
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
tail_df = df.tail(n)
|
||||
return {
|
||||
'data_ref': data_ref,
|
||||
'total_rows': len(df),
|
||||
'returned_rows': len(tail_df),
|
||||
'columns': list(df.columns),
|
||||
'data': tail_df.to_dict(orient='records')
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"tail failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def filter(
|
||||
self,
|
||||
data_ref: str,
|
||||
condition: str,
|
||||
name: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Filter DataFrame rows by condition.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
condition: pandas query string (e.g., "age > 30 and city == 'NYC'")
|
||||
name: Optional name for result data_ref
|
||||
|
||||
Returns:
|
||||
Dict with new data_ref for filtered result
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
filtered = df.query(condition)
|
||||
result_name = name or f"{data_ref}_filtered"
|
||||
return self._check_and_store(
|
||||
filtered,
|
||||
name=result_name,
|
||||
source=f"filter({data_ref}, '{condition}')"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"filter failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def select(
|
||||
self,
|
||||
data_ref: str,
|
||||
columns: List[str],
|
||||
name: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Select specific columns from DataFrame.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
columns: List of column names to select
|
||||
name: Optional name for result data_ref
|
||||
|
||||
Returns:
|
||||
Dict with new data_ref for selected columns
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
# Validate columns exist
|
||||
missing = [c for c in columns if c not in df.columns]
|
||||
if missing:
|
||||
return {
|
||||
'error': f'Columns not found: {missing}',
|
||||
'available_columns': list(df.columns)
|
||||
}
|
||||
|
||||
selected = df[columns]
|
||||
result_name = name or f"{data_ref}_select"
|
||||
return self._check_and_store(
|
||||
selected,
|
||||
name=result_name,
|
||||
source=f"select({data_ref}, {columns})"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"select failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def groupby(
|
||||
self,
|
||||
data_ref: str,
|
||||
by: Union[str, List[str]],
|
||||
agg: Dict[str, Union[str, List[str]]],
|
||||
name: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Group DataFrame and aggregate.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to stored DataFrame
|
||||
by: Column(s) to group by
|
||||
agg: Aggregation dict (e.g., {"sales": "sum", "count": "mean"})
|
||||
name: Optional name for result data_ref
|
||||
|
||||
Returns:
|
||||
Dict with new data_ref for aggregated result
|
||||
"""
|
||||
df = self.store.get_pandas(data_ref)
|
||||
if df is None:
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
|
||||
try:
|
||||
grouped = df.groupby(by).agg(agg).reset_index()
|
||||
# Flatten column names if multi-level
|
||||
if isinstance(grouped.columns, pd.MultiIndex):
|
||||
grouped.columns = ['_'.join(col).strip('_') for col in grouped.columns]
|
||||
|
||||
result_name = name or f"{data_ref}_grouped"
|
||||
return self._check_and_store(
|
||||
grouped,
|
||||
name=result_name,
|
||||
source=f"groupby({data_ref}, by={by})"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"groupby failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def join(
|
||||
self,
|
||||
left_ref: str,
|
||||
right_ref: str,
|
||||
on: Optional[Union[str, List[str]]] = None,
|
||||
left_on: Optional[Union[str, List[str]]] = None,
|
||||
right_on: Optional[Union[str, List[str]]] = None,
|
||||
how: str = 'inner',
|
||||
name: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Join two DataFrames.
|
||||
|
||||
Args:
|
||||
left_ref: Reference to left DataFrame
|
||||
right_ref: Reference to right DataFrame
|
||||
on: Column(s) to join on (if same name in both)
|
||||
left_on: Left join column(s)
|
||||
right_on: Right join column(s)
|
||||
how: Join type ('inner', 'left', 'right', 'outer')
|
||||
name: Optional name for result data_ref
|
||||
|
||||
Returns:
|
||||
Dict with new data_ref for joined result
|
||||
"""
|
||||
left_df = self.store.get_pandas(left_ref)
|
||||
right_df = self.store.get_pandas(right_ref)
|
||||
|
||||
if left_df is None:
|
||||
return {'error': f'DataFrame not found: {left_ref}'}
|
||||
if right_df is None:
|
||||
return {'error': f'DataFrame not found: {right_ref}'}
|
||||
|
||||
try:
|
||||
joined = pd.merge(
|
||||
left_df, right_df,
|
||||
on=on, left_on=left_on, right_on=right_on,
|
||||
how=how
|
||||
)
|
||||
result_name = name or f"{left_ref}_{right_ref}_joined"
|
||||
return self._check_and_store(
|
||||
joined,
|
||||
name=result_name,
|
||||
source=f"join({left_ref}, {right_ref}, how={how})"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"join failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def list_data(self) -> Dict:
|
||||
"""
|
||||
List all stored DataFrames.
|
||||
|
||||
Returns:
|
||||
Dict with list of stored DataFrames and their info
|
||||
"""
|
||||
refs = self.store.list_refs()
|
||||
return {
|
||||
'count': len(refs),
|
||||
'total_memory_mb': self.store.total_memory_mb(),
|
||||
'max_rows_limit': self.max_rows,
|
||||
'dataframes': refs
|
||||
}
|
||||
|
||||
async def drop_data(self, data_ref: str) -> Dict:
|
||||
"""
|
||||
Remove a DataFrame from storage.
|
||||
|
||||
Args:
|
||||
data_ref: Reference to drop
|
||||
|
||||
Returns:
|
||||
Dict with success status
|
||||
"""
|
||||
if self.store.drop(data_ref):
|
||||
return {'success': True, 'dropped': data_ref}
|
||||
return {'error': f'DataFrame not found: {data_ref}'}
|
||||
538
mcp-servers/data-platform/mcp_server/postgres_tools.py
Normal file
538
mcp-servers/data-platform/mcp_server/postgres_tools.py
Normal file
@@ -0,0 +1,538 @@
|
||||
"""
|
||||
PostgreSQL/PostGIS MCP Tools.
|
||||
|
||||
Provides database operations with connection pooling and PostGIS support.
|
||||
"""
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Any
|
||||
import json
|
||||
|
||||
from .data_store import DataStore
|
||||
from .config import load_config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Optional imports - gracefully handle missing dependencies
|
||||
try:
|
||||
import asyncpg
|
||||
ASYNCPG_AVAILABLE = True
|
||||
except ImportError:
|
||||
ASYNCPG_AVAILABLE = False
|
||||
logger.warning("asyncpg not available - PostgreSQL tools will be disabled")
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
PANDAS_AVAILABLE = True
|
||||
except ImportError:
|
||||
PANDAS_AVAILABLE = False
|
||||
|
||||
|
||||
class PostgresTools:
|
||||
"""PostgreSQL/PostGIS database tools"""
|
||||
|
||||
def __init__(self):
|
||||
self.store = DataStore.get_instance()
|
||||
self.config = load_config()
|
||||
self.pool: Optional[Any] = None
|
||||
self.max_rows = self.config.get('max_rows', 100_000)
|
||||
|
||||
async def _get_pool(self):
|
||||
"""Get or create connection pool"""
|
||||
if not ASYNCPG_AVAILABLE:
|
||||
raise RuntimeError("asyncpg not installed - run: pip install asyncpg")
|
||||
|
||||
if self.pool is None:
|
||||
postgres_url = self.config.get('postgres_url')
|
||||
if not postgres_url:
|
||||
raise RuntimeError(
|
||||
"PostgreSQL not configured. Set POSTGRES_URL in "
|
||||
"~/.config/claude/postgres.env"
|
||||
)
|
||||
self.pool = await asyncpg.create_pool(postgres_url, min_size=1, max_size=5)
|
||||
return self.pool
|
||||
|
||||
async def pg_connect(self) -> Dict:
|
||||
"""
|
||||
Test PostgreSQL connection and return status.
|
||||
|
||||
Returns:
|
||||
Dict with connection status, version, and database info
|
||||
"""
|
||||
if not ASYNCPG_AVAILABLE:
|
||||
return {
|
||||
'connected': False,
|
||||
'error': 'asyncpg not installed',
|
||||
'suggestion': 'pip install asyncpg'
|
||||
}
|
||||
|
||||
postgres_url = self.config.get('postgres_url')
|
||||
if not postgres_url:
|
||||
return {
|
||||
'connected': False,
|
||||
'error': 'POSTGRES_URL not configured',
|
||||
'suggestion': 'Create ~/.config/claude/postgres.env with POSTGRES_URL=postgresql://...'
|
||||
}
|
||||
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
version = await conn.fetchval('SELECT version()')
|
||||
db_name = await conn.fetchval('SELECT current_database()')
|
||||
user = await conn.fetchval('SELECT current_user')
|
||||
|
||||
# Check for PostGIS
|
||||
postgis_version = None
|
||||
try:
|
||||
postgis_version = await conn.fetchval('SELECT PostGIS_Version()')
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return {
|
||||
'connected': True,
|
||||
'database': db_name,
|
||||
'user': user,
|
||||
'version': version.split(',')[0] if version else 'Unknown',
|
||||
'postgis_version': postgis_version,
|
||||
'postgis_available': postgis_version is not None
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"pg_connect failed: {e}")
|
||||
return {
|
||||
'connected': False,
|
||||
'error': str(e)
|
||||
}
|
||||
|
||||
async def pg_query(
|
||||
self,
|
||||
query: str,
|
||||
params: Optional[List] = None,
|
||||
name: Optional[str] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Execute SELECT query and return results as data_ref.
|
||||
|
||||
Args:
|
||||
query: SQL SELECT query
|
||||
params: Query parameters (positional, use $1, $2, etc.)
|
||||
name: Optional name for result data_ref
|
||||
|
||||
Returns:
|
||||
Dict with data_ref for results or error
|
||||
"""
|
||||
if not PANDAS_AVAILABLE:
|
||||
return {'error': 'pandas not available'}
|
||||
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
if params:
|
||||
rows = await conn.fetch(query, *params)
|
||||
else:
|
||||
rows = await conn.fetch(query)
|
||||
|
||||
if not rows:
|
||||
return {
|
||||
'data_ref': None,
|
||||
'rows': 0,
|
||||
'message': 'Query returned no results'
|
||||
}
|
||||
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame([dict(r) for r in rows])
|
||||
|
||||
# Check row limit
|
||||
check = self.store.check_row_limit(len(df))
|
||||
if check['exceeded']:
|
||||
return {
|
||||
'error': 'row_limit_exceeded',
|
||||
**check,
|
||||
'preview': df.head(100).to_dict(orient='records')
|
||||
}
|
||||
|
||||
# Store result
|
||||
data_ref = self.store.store(df, name=name, source=f"pg_query: {query[:100]}...")
|
||||
return {
|
||||
'data_ref': data_ref,
|
||||
'rows': len(df),
|
||||
'columns': list(df.columns)
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"pg_query failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def pg_execute(
|
||||
self,
|
||||
query: str,
|
||||
params: Optional[List] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Execute INSERT/UPDATE/DELETE query.
|
||||
|
||||
Args:
|
||||
query: SQL DML query
|
||||
params: Query parameters
|
||||
|
||||
Returns:
|
||||
Dict with affected rows count
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
if params:
|
||||
result = await conn.execute(query, *params)
|
||||
else:
|
||||
result = await conn.execute(query)
|
||||
|
||||
# Parse result (e.g., "INSERT 0 1" or "UPDATE 5")
|
||||
parts = result.split()
|
||||
affected = int(parts[-1]) if parts else 0
|
||||
|
||||
return {
|
||||
'success': True,
|
||||
'command': parts[0] if parts else 'UNKNOWN',
|
||||
'affected_rows': affected
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"pg_execute failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def pg_tables(self, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
List all tables in schema.
|
||||
|
||||
Args:
|
||||
schema: Schema name (default: public)
|
||||
|
||||
Returns:
|
||||
Dict with list of tables
|
||||
"""
|
||||
query = """
|
||||
SELECT
|
||||
table_name,
|
||||
table_type,
|
||||
(SELECT count(*) FROM information_schema.columns c
|
||||
WHERE c.table_schema = t.table_schema
|
||||
AND c.table_name = t.table_name) as column_count
|
||||
FROM information_schema.tables t
|
||||
WHERE table_schema = $1
|
||||
ORDER BY table_name
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
rows = await conn.fetch(query, schema)
|
||||
tables = [
|
||||
{
|
||||
'name': r['table_name'],
|
||||
'type': r['table_type'],
|
||||
'columns': r['column_count']
|
||||
}
|
||||
for r in rows
|
||||
]
|
||||
return {
|
||||
'schema': schema,
|
||||
'count': len(tables),
|
||||
'tables': tables
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"pg_tables failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def pg_columns(self, table: str, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
Get column information for a table.
|
||||
|
||||
Args:
|
||||
table: Table name
|
||||
schema: Schema name (default: public)
|
||||
|
||||
Returns:
|
||||
Dict with column details
|
||||
"""
|
||||
query = """
|
||||
SELECT
|
||||
column_name,
|
||||
data_type,
|
||||
udt_name,
|
||||
is_nullable,
|
||||
column_default,
|
||||
character_maximum_length,
|
||||
numeric_precision
|
||||
FROM information_schema.columns
|
||||
WHERE table_schema = $1 AND table_name = $2
|
||||
ORDER BY ordinal_position
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
rows = await conn.fetch(query, schema, table)
|
||||
columns = [
|
||||
{
|
||||
'name': r['column_name'],
|
||||
'type': r['data_type'],
|
||||
'udt': r['udt_name'],
|
||||
'nullable': r['is_nullable'] == 'YES',
|
||||
'default': r['column_default'],
|
||||
'max_length': r['character_maximum_length'],
|
||||
'precision': r['numeric_precision']
|
||||
}
|
||||
for r in rows
|
||||
]
|
||||
return {
|
||||
'table': f'{schema}.{table}',
|
||||
'column_count': len(columns),
|
||||
'columns': columns
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"pg_columns failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def pg_schemas(self) -> Dict:
|
||||
"""
|
||||
List all schemas in database.
|
||||
|
||||
Returns:
|
||||
Dict with list of schemas
|
||||
"""
|
||||
query = """
|
||||
SELECT schema_name
|
||||
FROM information_schema.schemata
|
||||
WHERE schema_name NOT IN ('pg_catalog', 'information_schema', 'pg_toast')
|
||||
ORDER BY schema_name
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
rows = await conn.fetch(query)
|
||||
schemas = [r['schema_name'] for r in rows]
|
||||
return {
|
||||
'count': len(schemas),
|
||||
'schemas': schemas
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"pg_schemas failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def st_tables(self, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
List PostGIS-enabled tables.
|
||||
|
||||
Args:
|
||||
schema: Schema name (default: public)
|
||||
|
||||
Returns:
|
||||
Dict with list of tables with geometry columns
|
||||
"""
|
||||
query = """
|
||||
SELECT
|
||||
f_table_name as table_name,
|
||||
f_geometry_column as geometry_column,
|
||||
type as geometry_type,
|
||||
srid,
|
||||
coord_dimension
|
||||
FROM geometry_columns
|
||||
WHERE f_table_schema = $1
|
||||
ORDER BY f_table_name
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
rows = await conn.fetch(query, schema)
|
||||
tables = [
|
||||
{
|
||||
'table': r['table_name'],
|
||||
'geometry_column': r['geometry_column'],
|
||||
'geometry_type': r['geometry_type'],
|
||||
'srid': r['srid'],
|
||||
'dimensions': r['coord_dimension']
|
||||
}
|
||||
for r in rows
|
||||
]
|
||||
return {
|
||||
'schema': schema,
|
||||
'count': len(tables),
|
||||
'postgis_tables': tables
|
||||
}
|
||||
except Exception as e:
|
||||
if 'geometry_columns' in str(e):
|
||||
return {
|
||||
'error': 'PostGIS not installed or extension not enabled',
|
||||
'suggestion': 'Run: CREATE EXTENSION IF NOT EXISTS postgis;'
|
||||
}
|
||||
logger.error(f"st_tables failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def st_geometry_type(self, table: str, column: str, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
Get geometry type of a column.
|
||||
|
||||
Args:
|
||||
table: Table name
|
||||
column: Geometry column name
|
||||
schema: Schema name
|
||||
|
||||
Returns:
|
||||
Dict with geometry type information
|
||||
"""
|
||||
query = f"""
|
||||
SELECT DISTINCT ST_GeometryType({column}) as geom_type
|
||||
FROM {schema}.{table}
|
||||
WHERE {column} IS NOT NULL
|
||||
LIMIT 10
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
rows = await conn.fetch(query)
|
||||
types = [r['geom_type'] for r in rows]
|
||||
return {
|
||||
'table': f'{schema}.{table}',
|
||||
'column': column,
|
||||
'geometry_types': types
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"st_geometry_type failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def st_srid(self, table: str, column: str, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
Get SRID of geometry column.
|
||||
|
||||
Args:
|
||||
table: Table name
|
||||
column: Geometry column name
|
||||
schema: Schema name
|
||||
|
||||
Returns:
|
||||
Dict with SRID information
|
||||
"""
|
||||
query = f"""
|
||||
SELECT DISTINCT ST_SRID({column}) as srid
|
||||
FROM {schema}.{table}
|
||||
WHERE {column} IS NOT NULL
|
||||
LIMIT 1
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
row = await conn.fetchrow(query)
|
||||
srid = row['srid'] if row else None
|
||||
|
||||
# Get SRID description
|
||||
srid_info = None
|
||||
if srid:
|
||||
srid_query = """
|
||||
SELECT srtext, proj4text
|
||||
FROM spatial_ref_sys
|
||||
WHERE srid = $1
|
||||
"""
|
||||
srid_row = await conn.fetchrow(srid_query, srid)
|
||||
if srid_row:
|
||||
srid_info = {
|
||||
'description': srid_row['srtext'][:200] if srid_row['srtext'] else None,
|
||||
'proj4': srid_row['proj4text']
|
||||
}
|
||||
|
||||
return {
|
||||
'table': f'{schema}.{table}',
|
||||
'column': column,
|
||||
'srid': srid,
|
||||
'info': srid_info
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"st_srid failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def st_extent(self, table: str, column: str, schema: str = 'public') -> Dict:
|
||||
"""
|
||||
Get bounding box of all geometries.
|
||||
|
||||
Args:
|
||||
table: Table name
|
||||
column: Geometry column name
|
||||
schema: Schema name
|
||||
|
||||
Returns:
|
||||
Dict with bounding box coordinates
|
||||
"""
|
||||
query = f"""
|
||||
SELECT
|
||||
ST_XMin(extent) as xmin,
|
||||
ST_YMin(extent) as ymin,
|
||||
ST_XMax(extent) as xmax,
|
||||
ST_YMax(extent) as ymax
|
||||
FROM (
|
||||
SELECT ST_Extent({column}) as extent
|
||||
FROM {schema}.{table}
|
||||
) sub
|
||||
"""
|
||||
try:
|
||||
pool = await self._get_pool()
|
||||
async with pool.acquire() as conn:
|
||||
row = await conn.fetchrow(query)
|
||||
if row and row['xmin'] is not None:
|
||||
return {
|
||||
'table': f'{schema}.{table}',
|
||||
'column': column,
|
||||
'bbox': {
|
||||
'xmin': float(row['xmin']),
|
||||
'ymin': float(row['ymin']),
|
||||
'xmax': float(row['xmax']),
|
||||
'ymax': float(row['ymax'])
|
||||
}
|
||||
}
|
||||
return {
|
||||
'table': f'{schema}.{table}',
|
||||
'column': column,
|
||||
'bbox': None,
|
||||
'message': 'No geometries found or all NULL'
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"st_extent failed: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
async def close(self):
|
||||
"""Close connection pool"""
|
||||
if self.pool:
|
||||
await self.pool.close()
|
||||
self.pool = None
|
||||
|
||||
|
||||
def check_connection() -> None:
|
||||
"""
|
||||
Check PostgreSQL connection for SessionStart hook.
|
||||
Prints warning to stderr if connection fails.
|
||||
"""
|
||||
import sys
|
||||
|
||||
config = load_config()
|
||||
if not config.get('postgres_url'):
|
||||
print(
|
||||
"[data-platform] PostgreSQL not configured (POSTGRES_URL not set)",
|
||||
file=sys.stderr
|
||||
)
|
||||
return
|
||||
|
||||
async def test():
|
||||
try:
|
||||
if not ASYNCPG_AVAILABLE:
|
||||
print(
|
||||
"[data-platform] asyncpg not installed - PostgreSQL tools unavailable",
|
||||
file=sys.stderr
|
||||
)
|
||||
return
|
||||
|
||||
conn = await asyncpg.connect(config['postgres_url'], timeout=5)
|
||||
await conn.close()
|
||||
print("[data-platform] PostgreSQL connection OK", file=sys.stderr)
|
||||
except Exception as e:
|
||||
print(
|
||||
f"[data-platform] PostgreSQL connection failed: {e}",
|
||||
file=sys.stderr
|
||||
)
|
||||
|
||||
asyncio.run(test())
|
||||
795
mcp-servers/data-platform/mcp_server/server.py
Normal file
795
mcp-servers/data-platform/mcp_server/server.py
Normal file
@@ -0,0 +1,795 @@
|
||||
"""
|
||||
MCP Server entry point for Data Platform integration.
|
||||
|
||||
Provides pandas, PostgreSQL/PostGIS, and dbt tools to Claude Code via JSON-RPC 2.0 over stdio.
|
||||
"""
|
||||
import asyncio
|
||||
import logging
|
||||
import json
|
||||
from mcp.server import Server
|
||||
from mcp.server.stdio import stdio_server
|
||||
from mcp.types import Tool, TextContent
|
||||
|
||||
from .config import DataPlatformConfig
|
||||
from .data_store import DataStore
|
||||
from .pandas_tools import PandasTools
|
||||
from .postgres_tools import PostgresTools
|
||||
from .dbt_tools import DbtTools
|
||||
|
||||
# Suppress noisy MCP validation warnings on stderr
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logging.getLogger("root").setLevel(logging.ERROR)
|
||||
logging.getLogger("mcp").setLevel(logging.ERROR)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DataPlatformMCPServer:
|
||||
"""MCP Server for data platform integration"""
|
||||
|
||||
def __init__(self):
|
||||
self.server = Server("data-platform-mcp")
|
||||
self.config = None
|
||||
self.pandas_tools = None
|
||||
self.postgres_tools = None
|
||||
self.dbt_tools = None
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize server and load configuration."""
|
||||
try:
|
||||
config_loader = DataPlatformConfig()
|
||||
self.config = config_loader.load()
|
||||
|
||||
self.pandas_tools = PandasTools()
|
||||
self.postgres_tools = PostgresTools()
|
||||
self.dbt_tools = DbtTools()
|
||||
|
||||
# Log available capabilities
|
||||
caps = []
|
||||
caps.append("pandas")
|
||||
if self.config.get('postgres_available'):
|
||||
caps.append("PostgreSQL")
|
||||
if self.config.get('dbt_available'):
|
||||
caps.append("dbt")
|
||||
|
||||
logger.info(f"Data Platform MCP Server initialized with: {', '.join(caps)}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize: {e}")
|
||||
raise
|
||||
|
||||
def setup_tools(self):
|
||||
"""Register all available tools with the MCP server"""
|
||||
|
||||
@self.server.list_tools()
|
||||
async def list_tools() -> list[Tool]:
|
||||
"""Return list of available tools"""
|
||||
tools = [
|
||||
# pandas tools - always available
|
||||
Tool(
|
||||
name="read_csv",
|
||||
description="Load CSV file into DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "Path to CSV file"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for data_ref"
|
||||
},
|
||||
"chunk_size": {
|
||||
"type": "integer",
|
||||
"description": "Process in chunks of this size"
|
||||
}
|
||||
},
|
||||
"required": ["file_path"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="read_parquet",
|
||||
description="Load Parquet file into DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "Path to Parquet file"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for data_ref"
|
||||
},
|
||||
"columns": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Optional list of columns to load"
|
||||
}
|
||||
},
|
||||
"required": ["file_path"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="read_json",
|
||||
description="Load JSON/JSONL file into DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "Path to JSON file"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for data_ref"
|
||||
},
|
||||
"lines": {
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
"description": "Read as JSON Lines format"
|
||||
}
|
||||
},
|
||||
"required": ["file_path"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="to_csv",
|
||||
description="Export DataFrame to CSV file",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "Output file path"
|
||||
},
|
||||
"index": {
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
"description": "Include index column"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref", "file_path"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="to_parquet",
|
||||
description="Export DataFrame to Parquet file",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "Output file path"
|
||||
},
|
||||
"compression": {
|
||||
"type": "string",
|
||||
"default": "snappy",
|
||||
"description": "Compression codec"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref", "file_path"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="describe",
|
||||
description="Get statistical summary of DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="head",
|
||||
description="Get first N rows of DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"n": {
|
||||
"type": "integer",
|
||||
"default": 10,
|
||||
"description": "Number of rows"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="tail",
|
||||
description="Get last N rows of DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"n": {
|
||||
"type": "integer",
|
||||
"default": 10,
|
||||
"description": "Number of rows"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="filter",
|
||||
description="Filter DataFrame rows by condition",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"condition": {
|
||||
"type": "string",
|
||||
"description": "pandas query string (e.g., 'age > 30 and city == \"NYC\"')"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for result data_ref"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref", "condition"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="select",
|
||||
description="Select specific columns from DataFrame",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"columns": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "List of column names to select"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for result data_ref"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref", "columns"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="groupby",
|
||||
description="Group DataFrame and aggregate",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to stored DataFrame"
|
||||
},
|
||||
"by": {
|
||||
"oneOf": [
|
||||
{"type": "string"},
|
||||
{"type": "array", "items": {"type": "string"}}
|
||||
],
|
||||
"description": "Column(s) to group by"
|
||||
},
|
||||
"agg": {
|
||||
"type": "object",
|
||||
"description": "Aggregation dict (e.g., {\"sales\": \"sum\", \"count\": \"mean\"})"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for result data_ref"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref", "by", "agg"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="join",
|
||||
description="Join two DataFrames",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"left_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to left DataFrame"
|
||||
},
|
||||
"right_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to right DataFrame"
|
||||
},
|
||||
"on": {
|
||||
"oneOf": [
|
||||
{"type": "string"},
|
||||
{"type": "array", "items": {"type": "string"}}
|
||||
],
|
||||
"description": "Column(s) to join on (if same name in both)"
|
||||
},
|
||||
"left_on": {
|
||||
"oneOf": [
|
||||
{"type": "string"},
|
||||
{"type": "array", "items": {"type": "string"}}
|
||||
],
|
||||
"description": "Left join column(s)"
|
||||
},
|
||||
"right_on": {
|
||||
"oneOf": [
|
||||
{"type": "string"},
|
||||
{"type": "array", "items": {"type": "string"}}
|
||||
],
|
||||
"description": "Right join column(s)"
|
||||
},
|
||||
"how": {
|
||||
"type": "string",
|
||||
"enum": ["inner", "left", "right", "outer"],
|
||||
"default": "inner",
|
||||
"description": "Join type"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for result data_ref"
|
||||
}
|
||||
},
|
||||
"required": ["left_ref", "right_ref"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="list_data",
|
||||
description="List all stored DataFrames",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="drop_data",
|
||||
description="Remove a DataFrame from storage",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data_ref": {
|
||||
"type": "string",
|
||||
"description": "Reference to drop"
|
||||
}
|
||||
},
|
||||
"required": ["data_ref"]
|
||||
}
|
||||
),
|
||||
# PostgreSQL tools
|
||||
Tool(
|
||||
name="pg_connect",
|
||||
description="Test PostgreSQL connection and return status",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="pg_query",
|
||||
description="Execute SELECT query and return results as data_ref",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "SQL SELECT query"
|
||||
},
|
||||
"params": {
|
||||
"type": "array",
|
||||
"items": {},
|
||||
"description": "Query parameters (use $1, $2, etc.)"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for result data_ref"
|
||||
}
|
||||
},
|
||||
"required": ["query"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="pg_execute",
|
||||
description="Execute INSERT/UPDATE/DELETE query",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "SQL DML query"
|
||||
},
|
||||
"params": {
|
||||
"type": "array",
|
||||
"items": {},
|
||||
"description": "Query parameters"
|
||||
}
|
||||
},
|
||||
"required": ["query"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="pg_tables",
|
||||
description="List all tables in schema",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="pg_columns",
|
||||
description="Get column information for a table",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"table": {
|
||||
"type": "string",
|
||||
"description": "Table name"
|
||||
},
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
},
|
||||
"required": ["table"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="pg_schemas",
|
||||
description="List all schemas in database",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
),
|
||||
# PostGIS tools
|
||||
Tool(
|
||||
name="st_tables",
|
||||
description="List PostGIS-enabled tables",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="st_geometry_type",
|
||||
description="Get geometry type of a column",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"table": {
|
||||
"type": "string",
|
||||
"description": "Table name"
|
||||
},
|
||||
"column": {
|
||||
"type": "string",
|
||||
"description": "Geometry column name"
|
||||
},
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
},
|
||||
"required": ["table", "column"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="st_srid",
|
||||
description="Get SRID of geometry column",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"table": {
|
||||
"type": "string",
|
||||
"description": "Table name"
|
||||
},
|
||||
"column": {
|
||||
"type": "string",
|
||||
"description": "Geometry column name"
|
||||
},
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
},
|
||||
"required": ["table", "column"]
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="st_extent",
|
||||
description="Get bounding box of all geometries",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"table": {
|
||||
"type": "string",
|
||||
"description": "Table name"
|
||||
},
|
||||
"column": {
|
||||
"type": "string",
|
||||
"description": "Geometry column name"
|
||||
},
|
||||
"schema": {
|
||||
"type": "string",
|
||||
"default": "public",
|
||||
"description": "Schema name"
|
||||
}
|
||||
},
|
||||
"required": ["table", "column"]
|
||||
}
|
||||
),
|
||||
# dbt tools
|
||||
Tool(
|
||||
name="dbt_parse",
|
||||
description="Validate dbt project (pre-flight check)",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_run",
|
||||
description="Run dbt models with pre-validation",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"select": {
|
||||
"type": "string",
|
||||
"description": "Model selection (e.g., 'model_name', '+model_name', 'tag:daily')"
|
||||
},
|
||||
"exclude": {
|
||||
"type": "string",
|
||||
"description": "Models to exclude"
|
||||
},
|
||||
"full_refresh": {
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
"description": "Rebuild incremental models"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_test",
|
||||
description="Run dbt tests",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"select": {
|
||||
"type": "string",
|
||||
"description": "Test selection"
|
||||
},
|
||||
"exclude": {
|
||||
"type": "string",
|
||||
"description": "Tests to exclude"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_build",
|
||||
description="Run dbt build (run + test) with pre-validation",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"select": {
|
||||
"type": "string",
|
||||
"description": "Model/test selection"
|
||||
},
|
||||
"exclude": {
|
||||
"type": "string",
|
||||
"description": "Resources to exclude"
|
||||
},
|
||||
"full_refresh": {
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
"description": "Rebuild incremental models"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_compile",
|
||||
description="Compile dbt models to SQL without executing",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"select": {
|
||||
"type": "string",
|
||||
"description": "Model selection"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_ls",
|
||||
description="List dbt resources",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"select": {
|
||||
"type": "string",
|
||||
"description": "Resource selection"
|
||||
},
|
||||
"resource_type": {
|
||||
"type": "string",
|
||||
"enum": ["model", "test", "seed", "snapshot", "source"],
|
||||
"description": "Filter by type"
|
||||
},
|
||||
"output": {
|
||||
"type": "string",
|
||||
"enum": ["name", "path", "json"],
|
||||
"default": "name",
|
||||
"description": "Output format"
|
||||
}
|
||||
}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_docs_generate",
|
||||
description="Generate dbt documentation",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {}
|
||||
}
|
||||
),
|
||||
Tool(
|
||||
name="dbt_lineage",
|
||||
description="Get model dependencies and lineage",
|
||||
inputSchema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "Model name to analyze"
|
||||
}
|
||||
},
|
||||
"required": ["model"]
|
||||
}
|
||||
)
|
||||
]
|
||||
return tools
|
||||
|
||||
@self.server.call_tool()
|
||||
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
|
||||
"""Handle tool invocation."""
|
||||
try:
|
||||
# Route to appropriate tool handler
|
||||
# pandas tools
|
||||
if name == "read_csv":
|
||||
result = await self.pandas_tools.read_csv(**arguments)
|
||||
elif name == "read_parquet":
|
||||
result = await self.pandas_tools.read_parquet(**arguments)
|
||||
elif name == "read_json":
|
||||
result = await self.pandas_tools.read_json(**arguments)
|
||||
elif name == "to_csv":
|
||||
result = await self.pandas_tools.to_csv(**arguments)
|
||||
elif name == "to_parquet":
|
||||
result = await self.pandas_tools.to_parquet(**arguments)
|
||||
elif name == "describe":
|
||||
result = await self.pandas_tools.describe(**arguments)
|
||||
elif name == "head":
|
||||
result = await self.pandas_tools.head(**arguments)
|
||||
elif name == "tail":
|
||||
result = await self.pandas_tools.tail(**arguments)
|
||||
elif name == "filter":
|
||||
result = await self.pandas_tools.filter(**arguments)
|
||||
elif name == "select":
|
||||
result = await self.pandas_tools.select(**arguments)
|
||||
elif name == "groupby":
|
||||
result = await self.pandas_tools.groupby(**arguments)
|
||||
elif name == "join":
|
||||
result = await self.pandas_tools.join(**arguments)
|
||||
elif name == "list_data":
|
||||
result = await self.pandas_tools.list_data()
|
||||
elif name == "drop_data":
|
||||
result = await self.pandas_tools.drop_data(**arguments)
|
||||
# PostgreSQL tools
|
||||
elif name == "pg_connect":
|
||||
result = await self.postgres_tools.pg_connect()
|
||||
elif name == "pg_query":
|
||||
result = await self.postgres_tools.pg_query(**arguments)
|
||||
elif name == "pg_execute":
|
||||
result = await self.postgres_tools.pg_execute(**arguments)
|
||||
elif name == "pg_tables":
|
||||
result = await self.postgres_tools.pg_tables(**arguments)
|
||||
elif name == "pg_columns":
|
||||
result = await self.postgres_tools.pg_columns(**arguments)
|
||||
elif name == "pg_schemas":
|
||||
result = await self.postgres_tools.pg_schemas()
|
||||
# PostGIS tools
|
||||
elif name == "st_tables":
|
||||
result = await self.postgres_tools.st_tables(**arguments)
|
||||
elif name == "st_geometry_type":
|
||||
result = await self.postgres_tools.st_geometry_type(**arguments)
|
||||
elif name == "st_srid":
|
||||
result = await self.postgres_tools.st_srid(**arguments)
|
||||
elif name == "st_extent":
|
||||
result = await self.postgres_tools.st_extent(**arguments)
|
||||
# dbt tools
|
||||
elif name == "dbt_parse":
|
||||
result = await self.dbt_tools.dbt_parse()
|
||||
elif name == "dbt_run":
|
||||
result = await self.dbt_tools.dbt_run(**arguments)
|
||||
elif name == "dbt_test":
|
||||
result = await self.dbt_tools.dbt_test(**arguments)
|
||||
elif name == "dbt_build":
|
||||
result = await self.dbt_tools.dbt_build(**arguments)
|
||||
elif name == "dbt_compile":
|
||||
result = await self.dbt_tools.dbt_compile(**arguments)
|
||||
elif name == "dbt_ls":
|
||||
result = await self.dbt_tools.dbt_ls(**arguments)
|
||||
elif name == "dbt_docs_generate":
|
||||
result = await self.dbt_tools.dbt_docs_generate()
|
||||
elif name == "dbt_lineage":
|
||||
result = await self.dbt_tools.dbt_lineage(**arguments)
|
||||
else:
|
||||
raise ValueError(f"Unknown tool: {name}")
|
||||
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=json.dumps(result, indent=2, default=str)
|
||||
)]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Tool {name} failed: {e}")
|
||||
return [TextContent(
|
||||
type="text",
|
||||
text=json.dumps({"error": str(e)}, indent=2)
|
||||
)]
|
||||
|
||||
async def run(self):
|
||||
"""Run the MCP server"""
|
||||
await self.initialize()
|
||||
self.setup_tools()
|
||||
|
||||
async with stdio_server() as (read_stream, write_stream):
|
||||
await self.server.run(
|
||||
read_stream,
|
||||
write_stream,
|
||||
self.server.create_initialization_options()
|
||||
)
|
||||
|
||||
|
||||
async def main():
|
||||
"""Main entry point"""
|
||||
server = DataPlatformMCPServer()
|
||||
await server.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
49
mcp-servers/data-platform/pyproject.toml
Normal file
49
mcp-servers/data-platform/pyproject.toml
Normal file
@@ -0,0 +1,49 @@
|
||||
[build-system]
|
||||
requires = ["setuptools>=61.0", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "data-platform-mcp"
|
||||
version = "1.0.0"
|
||||
description = "MCP Server for data engineering with pandas, PostgreSQL/PostGIS, and dbt"
|
||||
readme = "README.md"
|
||||
license = {text = "MIT"}
|
||||
requires-python = ">=3.10"
|
||||
authors = [
|
||||
{name = "Leo Miranda"}
|
||||
]
|
||||
classifiers = [
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.12",
|
||||
]
|
||||
dependencies = [
|
||||
"mcp>=0.9.0",
|
||||
"pandas>=2.0.0",
|
||||
"pyarrow>=14.0.0",
|
||||
"asyncpg>=0.29.0",
|
||||
"geoalchemy2>=0.14.0",
|
||||
"shapely>=2.0.0",
|
||||
"dbt-core>=1.9.0",
|
||||
"dbt-postgres>=1.9.0",
|
||||
"python-dotenv>=1.0.0",
|
||||
"pydantic>=2.5.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = [
|
||||
"pytest>=7.4.3",
|
||||
"pytest-asyncio>=0.23.0",
|
||||
]
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
where = ["."]
|
||||
include = ["mcp_server*"]
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
asyncio_mode = "auto"
|
||||
testpaths = ["tests"]
|
||||
23
mcp-servers/data-platform/requirements.txt
Normal file
23
mcp-servers/data-platform/requirements.txt
Normal file
@@ -0,0 +1,23 @@
|
||||
# MCP SDK
|
||||
mcp>=0.9.0
|
||||
|
||||
# Data Processing
|
||||
pandas>=2.0.0
|
||||
pyarrow>=14.0.0
|
||||
|
||||
# PostgreSQL/PostGIS
|
||||
asyncpg>=0.29.0
|
||||
geoalchemy2>=0.14.0
|
||||
shapely>=2.0.0
|
||||
|
||||
# dbt
|
||||
dbt-core>=1.9.0
|
||||
dbt-postgres>=1.9.0
|
||||
|
||||
# Utilities
|
||||
python-dotenv>=1.0.0
|
||||
pydantic>=2.5.0
|
||||
|
||||
# Testing
|
||||
pytest>=7.4.3
|
||||
pytest-asyncio>=0.23.0
|
||||
3
mcp-servers/data-platform/tests/__init__.py
Normal file
3
mcp-servers/data-platform/tests/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
"""
|
||||
Tests for Data Platform MCP Server.
|
||||
"""
|
||||
239
mcp-servers/data-platform/tests/test_config.py
Normal file
239
mcp-servers/data-platform/tests/test_config.py
Normal file
@@ -0,0 +1,239 @@
|
||||
"""
|
||||
Unit tests for configuration loader.
|
||||
"""
|
||||
import pytest
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
|
||||
def test_load_system_config(tmp_path, monkeypatch):
|
||||
"""Test loading system-level PostgreSQL configuration"""
|
||||
# Import here to avoid import errors before setup
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
# Mock home directory
|
||||
config_dir = tmp_path / '.config' / 'claude'
|
||||
config_dir.mkdir(parents=True)
|
||||
|
||||
config_file = config_dir / 'postgres.env'
|
||||
config_file.write_text(
|
||||
"POSTGRES_URL=postgresql://user:pass@localhost:5432/testdb\n"
|
||||
)
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(tmp_path)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['postgres_url'] == 'postgresql://user:pass@localhost:5432/testdb'
|
||||
assert result['postgres_available'] is True
|
||||
|
||||
|
||||
def test_postgres_optional(tmp_path, monkeypatch):
|
||||
"""Test that PostgreSQL configuration is optional"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
# No postgres.env file
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(tmp_path)
|
||||
|
||||
# Clear any existing env vars
|
||||
monkeypatch.delenv('POSTGRES_URL', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['postgres_url'] is None
|
||||
assert result['postgres_available'] is False
|
||||
|
||||
|
||||
def test_project_config_override(tmp_path, monkeypatch):
|
||||
"""Test that project config overrides system config"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
# Set up system config
|
||||
system_config_dir = tmp_path / '.config' / 'claude'
|
||||
system_config_dir.mkdir(parents=True)
|
||||
|
||||
system_config = system_config_dir / 'postgres.env'
|
||||
system_config.write_text(
|
||||
"POSTGRES_URL=postgresql://system:pass@localhost:5432/systemdb\n"
|
||||
)
|
||||
|
||||
# Set up project config
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
|
||||
project_config = project_dir / '.env'
|
||||
project_config.write_text(
|
||||
"POSTGRES_URL=postgresql://project:pass@localhost:5432/projectdb\n"
|
||||
"DBT_PROJECT_DIR=/path/to/dbt\n"
|
||||
)
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(project_dir)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
# Project config should override
|
||||
assert result['postgres_url'] == 'postgresql://project:pass@localhost:5432/projectdb'
|
||||
assert result['dbt_project_dir'] == '/path/to/dbt'
|
||||
|
||||
|
||||
def test_max_rows_config(tmp_path, monkeypatch):
|
||||
"""Test max rows configuration"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
|
||||
project_config = project_dir / '.env'
|
||||
project_config.write_text("DATA_PLATFORM_MAX_ROWS=50000\n")
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(project_dir)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['max_rows'] == 50000
|
||||
|
||||
|
||||
def test_default_max_rows(tmp_path, monkeypatch):
|
||||
"""Test default max rows value"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(tmp_path)
|
||||
|
||||
# Clear any existing env vars
|
||||
monkeypatch.delenv('DATA_PLATFORM_MAX_ROWS', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['max_rows'] == 100_000 # Default value
|
||||
|
||||
|
||||
def test_dbt_auto_detection(tmp_path, monkeypatch):
|
||||
"""Test automatic dbt project detection"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
# Create project with dbt_project.yml
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
(project_dir / 'dbt_project.yml').write_text("name: test_project\n")
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(project_dir)
|
||||
# Clear PWD and DBT_PROJECT_DIR to ensure auto-detection
|
||||
monkeypatch.delenv('PWD', raising=False)
|
||||
monkeypatch.delenv('DBT_PROJECT_DIR', raising=False)
|
||||
monkeypatch.delenv('CLAUDE_PROJECT_DIR', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['dbt_project_dir'] == str(project_dir)
|
||||
assert result['dbt_available'] is True
|
||||
|
||||
|
||||
def test_dbt_subdirectory_detection(tmp_path, monkeypatch):
|
||||
"""Test dbt project detection in subdirectory"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
# Create project with dbt in subdirectory
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
# Need a marker file for _find_project_directory to find the project
|
||||
(project_dir / '.git').mkdir()
|
||||
dbt_dir = project_dir / 'transform'
|
||||
dbt_dir.mkdir()
|
||||
(dbt_dir / 'dbt_project.yml').write_text("name: test_project\n")
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(project_dir)
|
||||
# Clear env vars to ensure auto-detection
|
||||
monkeypatch.delenv('PWD', raising=False)
|
||||
monkeypatch.delenv('DBT_PROJECT_DIR', raising=False)
|
||||
monkeypatch.delenv('CLAUDE_PROJECT_DIR', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['dbt_project_dir'] == str(dbt_dir)
|
||||
assert result['dbt_available'] is True
|
||||
|
||||
|
||||
def test_no_dbt_project(tmp_path, monkeypatch):
|
||||
"""Test when no dbt project exists"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
|
||||
monkeypatch.setenv('HOME', str(tmp_path))
|
||||
monkeypatch.chdir(project_dir)
|
||||
|
||||
# Clear any existing env vars
|
||||
monkeypatch.delenv('DBT_PROJECT_DIR', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config.load()
|
||||
|
||||
assert result['dbt_project_dir'] is None
|
||||
assert result['dbt_available'] is False
|
||||
|
||||
|
||||
def test_find_project_directory_from_env(tmp_path, monkeypatch):
|
||||
"""Test finding project directory from CLAUDE_PROJECT_DIR env var"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
project_dir = tmp_path / 'my-project'
|
||||
project_dir.mkdir()
|
||||
(project_dir / '.git').mkdir()
|
||||
|
||||
monkeypatch.setenv('CLAUDE_PROJECT_DIR', str(project_dir))
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config._find_project_directory()
|
||||
|
||||
assert result == project_dir
|
||||
|
||||
|
||||
def test_find_project_directory_from_cwd(tmp_path, monkeypatch):
|
||||
"""Test finding project directory from cwd with .env file"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
project_dir = tmp_path / 'project'
|
||||
project_dir.mkdir()
|
||||
(project_dir / '.env').write_text("TEST=value")
|
||||
|
||||
monkeypatch.chdir(project_dir)
|
||||
monkeypatch.delenv('CLAUDE_PROJECT_DIR', raising=False)
|
||||
monkeypatch.delenv('PWD', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config._find_project_directory()
|
||||
|
||||
assert result == project_dir
|
||||
|
||||
|
||||
def test_find_project_directory_none_when_no_markers(tmp_path, monkeypatch):
|
||||
"""Test returns None when no project markers found"""
|
||||
from mcp_server.config import DataPlatformConfig
|
||||
|
||||
empty_dir = tmp_path / 'empty'
|
||||
empty_dir.mkdir()
|
||||
|
||||
monkeypatch.chdir(empty_dir)
|
||||
monkeypatch.delenv('CLAUDE_PROJECT_DIR', raising=False)
|
||||
monkeypatch.delenv('PWD', raising=False)
|
||||
monkeypatch.delenv('DBT_PROJECT_DIR', raising=False)
|
||||
|
||||
config = DataPlatformConfig()
|
||||
result = config._find_project_directory()
|
||||
|
||||
assert result is None
|
||||
240
mcp-servers/data-platform/tests/test_data_store.py
Normal file
240
mcp-servers/data-platform/tests/test_data_store.py
Normal file
@@ -0,0 +1,240 @@
|
||||
"""
|
||||
Unit tests for Arrow IPC DataFrame registry.
|
||||
"""
|
||||
import pytest
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
|
||||
|
||||
def test_store_pandas_dataframe():
|
||||
"""Test storing pandas DataFrame"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
# Create fresh instance for test
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'y', 'z']})
|
||||
data_ref = store.store(df, name='test_df')
|
||||
|
||||
assert data_ref == 'test_df'
|
||||
assert 'test_df' in store._dataframes
|
||||
assert store._metadata['test_df'].rows == 3
|
||||
assert store._metadata['test_df'].columns == 2
|
||||
|
||||
|
||||
def test_store_arrow_table():
|
||||
"""Test storing Arrow Table directly"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
table = pa.table({'x': [1, 2, 3], 'y': [4, 5, 6]})
|
||||
data_ref = store.store(table, name='arrow_test')
|
||||
|
||||
assert data_ref == 'arrow_test'
|
||||
assert store._dataframes['arrow_test'].num_rows == 3
|
||||
|
||||
|
||||
def test_store_auto_name():
|
||||
"""Test auto-generated data_ref names"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({'a': [1, 2]})
|
||||
data_ref = store.store(df)
|
||||
|
||||
assert data_ref.startswith('df_')
|
||||
assert len(data_ref) == 11 # df_ + 8 hex chars
|
||||
|
||||
|
||||
def test_get_dataframe():
|
||||
"""Test retrieving stored DataFrame"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({'a': [1, 2, 3]})
|
||||
store.store(df, name='get_test')
|
||||
|
||||
result = store.get('get_test')
|
||||
assert result is not None
|
||||
assert result.num_rows == 3
|
||||
|
||||
|
||||
def test_get_pandas():
|
||||
"""Test retrieving as pandas DataFrame"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'y', 'z']})
|
||||
store.store(df, name='pandas_test')
|
||||
|
||||
result = store.get_pandas('pandas_test')
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert list(result.columns) == ['a', 'b']
|
||||
assert len(result) == 3
|
||||
|
||||
|
||||
def test_get_nonexistent():
|
||||
"""Test getting nonexistent data_ref returns None"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
assert store.get('nonexistent') is None
|
||||
assert store.get_pandas('nonexistent') is None
|
||||
|
||||
|
||||
def test_list_refs():
|
||||
"""Test listing all stored DataFrames"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
store.store(pd.DataFrame({'a': [1, 2]}), name='df1')
|
||||
store.store(pd.DataFrame({'b': [3, 4, 5]}), name='df2')
|
||||
|
||||
refs = store.list_refs()
|
||||
|
||||
assert len(refs) == 2
|
||||
ref_names = [r['ref'] for r in refs]
|
||||
assert 'df1' in ref_names
|
||||
assert 'df2' in ref_names
|
||||
|
||||
|
||||
def test_drop_dataframe():
|
||||
"""Test dropping a DataFrame"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
store.store(pd.DataFrame({'a': [1]}), name='drop_test')
|
||||
assert store.get('drop_test') is not None
|
||||
|
||||
result = store.drop('drop_test')
|
||||
assert result is True
|
||||
assert store.get('drop_test') is None
|
||||
|
||||
|
||||
def test_drop_nonexistent():
|
||||
"""Test dropping nonexistent data_ref"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
result = store.drop('nonexistent')
|
||||
assert result is False
|
||||
|
||||
|
||||
def test_clear():
|
||||
"""Test clearing all DataFrames"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
store.store(pd.DataFrame({'a': [1]}), name='df1')
|
||||
store.store(pd.DataFrame({'b': [2]}), name='df2')
|
||||
|
||||
store.clear()
|
||||
|
||||
assert len(store.list_refs()) == 0
|
||||
|
||||
|
||||
def test_get_info():
|
||||
"""Test getting DataFrame metadata"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'y', 'z']})
|
||||
store.store(df, name='info_test', source='test source')
|
||||
|
||||
info = store.get_info('info_test')
|
||||
|
||||
assert info.ref == 'info_test'
|
||||
assert info.rows == 3
|
||||
assert info.columns == 2
|
||||
assert info.column_names == ['a', 'b']
|
||||
assert info.source == 'test source'
|
||||
assert info.memory_bytes > 0
|
||||
|
||||
|
||||
def test_total_memory():
|
||||
"""Test total memory calculation"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
store.store(pd.DataFrame({'a': range(100)}), name='df1')
|
||||
store.store(pd.DataFrame({'b': range(200)}), name='df2')
|
||||
|
||||
total = store.total_memory_bytes()
|
||||
assert total > 0
|
||||
|
||||
total_mb = store.total_memory_mb()
|
||||
assert total_mb >= 0
|
||||
|
||||
|
||||
def test_check_row_limit():
|
||||
"""Test row limit checking"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._max_rows = 100
|
||||
|
||||
# Under limit
|
||||
result = store.check_row_limit(50)
|
||||
assert result['exceeded'] is False
|
||||
|
||||
# Over limit
|
||||
result = store.check_row_limit(150)
|
||||
assert result['exceeded'] is True
|
||||
assert 'suggestion' in result
|
||||
|
||||
|
||||
def test_metadata_dtypes():
|
||||
"""Test that dtypes are correctly recorded"""
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
store = DataStore()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
df = pd.DataFrame({
|
||||
'int_col': [1, 2, 3],
|
||||
'float_col': [1.1, 2.2, 3.3],
|
||||
'str_col': ['a', 'b', 'c']
|
||||
})
|
||||
store.store(df, name='dtype_test')
|
||||
|
||||
info = store.get_info('dtype_test')
|
||||
|
||||
assert 'int_col' in info.dtypes
|
||||
assert 'float_col' in info.dtypes
|
||||
assert 'str_col' in info.dtypes
|
||||
318
mcp-servers/data-platform/tests/test_dbt_tools.py
Normal file
318
mcp-servers/data-platform/tests/test_dbt_tools.py
Normal file
@@ -0,0 +1,318 @@
|
||||
"""
|
||||
Unit tests for dbt MCP tools.
|
||||
"""
|
||||
import pytest
|
||||
from unittest.mock import Mock, patch, MagicMock
|
||||
import subprocess
|
||||
import json
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_config(tmp_path):
|
||||
"""Mock configuration with dbt project"""
|
||||
dbt_dir = tmp_path / 'dbt_project'
|
||||
dbt_dir.mkdir()
|
||||
(dbt_dir / 'dbt_project.yml').write_text('name: test_project\n')
|
||||
|
||||
return {
|
||||
'dbt_project_dir': str(dbt_dir),
|
||||
'dbt_profiles_dir': str(tmp_path / '.dbt')
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dbt_tools(mock_config):
|
||||
"""Create DbtTools instance with mocked config"""
|
||||
with patch('mcp_server.dbt_tools.load_config', return_value=mock_config):
|
||||
from mcp_server.dbt_tools import DbtTools
|
||||
|
||||
tools = DbtTools()
|
||||
tools.project_dir = mock_config['dbt_project_dir']
|
||||
tools.profiles_dir = mock_config['dbt_profiles_dir']
|
||||
return tools
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_parse_success(dbt_tools):
|
||||
"""Test successful dbt parse"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = 'Parsed successfully'
|
||||
mock_result.stderr = ''
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_parse()
|
||||
|
||||
assert result['valid'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_parse_failure(dbt_tools):
|
||||
"""Test dbt parse with errors"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 1
|
||||
mock_result.stdout = ''
|
||||
mock_result.stderr = 'Compilation error: deprecated syntax'
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_parse()
|
||||
|
||||
assert result['valid'] is False
|
||||
assert 'deprecated' in str(result.get('details', '')).lower() or len(result.get('errors', [])) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_run_with_prevalidation(dbt_tools):
|
||||
"""Test dbt run includes pre-validation"""
|
||||
# First call is parse, second is run
|
||||
mock_parse = MagicMock()
|
||||
mock_parse.returncode = 0
|
||||
mock_parse.stdout = 'OK'
|
||||
mock_parse.stderr = ''
|
||||
|
||||
mock_run = MagicMock()
|
||||
mock_run.returncode = 0
|
||||
mock_run.stdout = 'Completed successfully'
|
||||
mock_run.stderr = ''
|
||||
|
||||
with patch('subprocess.run', side_effect=[mock_parse, mock_run]):
|
||||
result = await dbt_tools.dbt_run()
|
||||
|
||||
assert result['success'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_run_fails_validation(dbt_tools):
|
||||
"""Test dbt run fails if validation fails"""
|
||||
mock_parse = MagicMock()
|
||||
mock_parse.returncode = 1
|
||||
mock_parse.stdout = ''
|
||||
mock_parse.stderr = 'Parse error'
|
||||
|
||||
with patch('subprocess.run', return_value=mock_parse):
|
||||
result = await dbt_tools.dbt_run()
|
||||
|
||||
assert 'error' in result
|
||||
assert 'Pre-validation failed' in result['error']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_run_with_selection(dbt_tools):
|
||||
"""Test dbt run with model selection"""
|
||||
mock_parse = MagicMock()
|
||||
mock_parse.returncode = 0
|
||||
mock_parse.stdout = 'OK'
|
||||
mock_parse.stderr = ''
|
||||
|
||||
mock_run = MagicMock()
|
||||
mock_run.returncode = 0
|
||||
mock_run.stdout = 'Completed'
|
||||
mock_run.stderr = ''
|
||||
|
||||
calls = []
|
||||
|
||||
def track_calls(*args, **kwargs):
|
||||
calls.append(args[0] if args else kwargs.get('args', []))
|
||||
if len(calls) == 1:
|
||||
return mock_parse
|
||||
return mock_run
|
||||
|
||||
with patch('subprocess.run', side_effect=track_calls):
|
||||
result = await dbt_tools.dbt_run(select='dim_customers')
|
||||
|
||||
# Verify --select was passed
|
||||
assert any('--select' in str(call) for call in calls)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_test(dbt_tools):
|
||||
"""Test dbt test"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = 'All tests passed'
|
||||
mock_result.stderr = ''
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_test()
|
||||
|
||||
assert result['success'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_build(dbt_tools):
|
||||
"""Test dbt build with pre-validation"""
|
||||
mock_parse = MagicMock()
|
||||
mock_parse.returncode = 0
|
||||
mock_parse.stdout = 'OK'
|
||||
mock_parse.stderr = ''
|
||||
|
||||
mock_build = MagicMock()
|
||||
mock_build.returncode = 0
|
||||
mock_build.stdout = 'Build complete'
|
||||
mock_build.stderr = ''
|
||||
|
||||
with patch('subprocess.run', side_effect=[mock_parse, mock_build]):
|
||||
result = await dbt_tools.dbt_build()
|
||||
|
||||
assert result['success'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_compile(dbt_tools):
|
||||
"""Test dbt compile"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = 'Compiled'
|
||||
mock_result.stderr = ''
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_compile()
|
||||
|
||||
assert result['success'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_ls(dbt_tools):
|
||||
"""Test dbt ls"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = 'dim_customers\ndim_products\nfct_orders\n'
|
||||
mock_result.stderr = ''
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_ls()
|
||||
|
||||
assert result['success'] is True
|
||||
assert result['count'] == 3
|
||||
assert 'dim_customers' in result['resources']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_docs_generate(dbt_tools, tmp_path):
|
||||
"""Test dbt docs generate"""
|
||||
mock_result = MagicMock()
|
||||
mock_result.returncode = 0
|
||||
mock_result.stdout = 'Done'
|
||||
mock_result.stderr = ''
|
||||
|
||||
# Create fake target directory
|
||||
target_dir = tmp_path / 'dbt_project' / 'target'
|
||||
target_dir.mkdir(parents=True)
|
||||
(target_dir / 'catalog.json').write_text('{}')
|
||||
(target_dir / 'manifest.json').write_text('{}')
|
||||
|
||||
dbt_tools.project_dir = str(tmp_path / 'dbt_project')
|
||||
|
||||
with patch('subprocess.run', return_value=mock_result):
|
||||
result = await dbt_tools.dbt_docs_generate()
|
||||
|
||||
assert result['success'] is True
|
||||
assert result['catalog_generated'] is True
|
||||
assert result['manifest_generated'] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_lineage(dbt_tools, tmp_path):
|
||||
"""Test dbt lineage"""
|
||||
# Create manifest
|
||||
target_dir = tmp_path / 'dbt_project' / 'target'
|
||||
target_dir.mkdir(parents=True)
|
||||
|
||||
manifest = {
|
||||
'nodes': {
|
||||
'model.test.dim_customers': {
|
||||
'name': 'dim_customers',
|
||||
'resource_type': 'model',
|
||||
'schema': 'public',
|
||||
'database': 'testdb',
|
||||
'description': 'Customer dimension',
|
||||
'tags': ['daily'],
|
||||
'config': {'materialized': 'table'},
|
||||
'depends_on': {
|
||||
'nodes': ['model.test.stg_customers']
|
||||
}
|
||||
},
|
||||
'model.test.stg_customers': {
|
||||
'name': 'stg_customers',
|
||||
'resource_type': 'model',
|
||||
'depends_on': {'nodes': []}
|
||||
},
|
||||
'model.test.fct_orders': {
|
||||
'name': 'fct_orders',
|
||||
'resource_type': 'model',
|
||||
'depends_on': {
|
||||
'nodes': ['model.test.dim_customers']
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
(target_dir / 'manifest.json').write_text(json.dumps(manifest))
|
||||
|
||||
dbt_tools.project_dir = str(tmp_path / 'dbt_project')
|
||||
|
||||
result = await dbt_tools.dbt_lineage('dim_customers')
|
||||
|
||||
assert result['model'] == 'dim_customers'
|
||||
assert 'model.test.stg_customers' in result['upstream']
|
||||
assert 'model.test.fct_orders' in result['downstream']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_lineage_model_not_found(dbt_tools, tmp_path):
|
||||
"""Test dbt lineage with nonexistent model"""
|
||||
target_dir = tmp_path / 'dbt_project' / 'target'
|
||||
target_dir.mkdir(parents=True)
|
||||
|
||||
manifest = {
|
||||
'nodes': {
|
||||
'model.test.dim_customers': {
|
||||
'name': 'dim_customers',
|
||||
'resource_type': 'model'
|
||||
}
|
||||
}
|
||||
}
|
||||
(target_dir / 'manifest.json').write_text(json.dumps(manifest))
|
||||
|
||||
dbt_tools.project_dir = str(tmp_path / 'dbt_project')
|
||||
|
||||
result = await dbt_tools.dbt_lineage('nonexistent_model')
|
||||
|
||||
assert 'error' in result
|
||||
assert 'not found' in result['error'].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_no_project():
|
||||
"""Test dbt tools when no project configured"""
|
||||
with patch('mcp_server.dbt_tools.load_config', return_value={'dbt_project_dir': None}):
|
||||
from mcp_server.dbt_tools import DbtTools
|
||||
|
||||
tools = DbtTools()
|
||||
tools.project_dir = None
|
||||
|
||||
result = await tools.dbt_run()
|
||||
|
||||
assert 'error' in result
|
||||
assert 'not found' in result['error'].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_timeout(dbt_tools):
|
||||
"""Test dbt command timeout handling"""
|
||||
with patch('subprocess.run', side_effect=subprocess.TimeoutExpired('dbt', 300)):
|
||||
result = await dbt_tools.dbt_parse()
|
||||
|
||||
assert 'error' in result
|
||||
assert 'timed out' in result['error'].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dbt_not_installed(dbt_tools):
|
||||
"""Test handling when dbt is not installed"""
|
||||
with patch('subprocess.run', side_effect=FileNotFoundError()):
|
||||
result = await dbt_tools.dbt_parse()
|
||||
|
||||
assert 'error' in result
|
||||
assert 'not found' in result['error'].lower()
|
||||
301
mcp-servers/data-platform/tests/test_pandas_tools.py
Normal file
301
mcp-servers/data-platform/tests/test_pandas_tools.py
Normal file
@@ -0,0 +1,301 @@
|
||||
"""
|
||||
Unit tests for pandas MCP tools.
|
||||
"""
|
||||
import pytest
|
||||
import pandas as pd
|
||||
import tempfile
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def temp_csv(tmp_path):
|
||||
"""Create a temporary CSV file for testing"""
|
||||
csv_path = tmp_path / 'test.csv'
|
||||
df = pd.DataFrame({
|
||||
'id': [1, 2, 3, 4, 5],
|
||||
'name': ['Alice', 'Bob', 'Charlie', 'Diana', 'Eve'],
|
||||
'value': [10.5, 20.0, 30.5, 40.0, 50.5]
|
||||
})
|
||||
df.to_csv(csv_path, index=False)
|
||||
return str(csv_path)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def temp_parquet(tmp_path):
|
||||
"""Create a temporary Parquet file for testing"""
|
||||
parquet_path = tmp_path / 'test.parquet'
|
||||
df = pd.DataFrame({
|
||||
'id': [1, 2, 3],
|
||||
'data': ['a', 'b', 'c']
|
||||
})
|
||||
df.to_parquet(parquet_path)
|
||||
return str(parquet_path)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def temp_json(tmp_path):
|
||||
"""Create a temporary JSON file for testing"""
|
||||
json_path = tmp_path / 'test.json'
|
||||
df = pd.DataFrame({
|
||||
'x': [1, 2],
|
||||
'y': [3, 4]
|
||||
})
|
||||
df.to_json(json_path, orient='records')
|
||||
return str(json_path)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def pandas_tools():
|
||||
"""Create PandasTools instance with fresh store"""
|
||||
from mcp_server.pandas_tools import PandasTools
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
# Reset store for test isolation
|
||||
store = DataStore.get_instance()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
return PandasTools()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_read_csv(pandas_tools, temp_csv):
|
||||
"""Test reading CSV file"""
|
||||
result = await pandas_tools.read_csv(temp_csv, name='csv_test')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['data_ref'] == 'csv_test'
|
||||
assert result['rows'] == 5
|
||||
assert 'id' in result['columns']
|
||||
assert 'name' in result['columns']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_read_csv_nonexistent(pandas_tools):
|
||||
"""Test reading nonexistent CSV file"""
|
||||
result = await pandas_tools.read_csv('/nonexistent/path.csv')
|
||||
|
||||
assert 'error' in result
|
||||
assert 'not found' in result['error'].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_read_parquet(pandas_tools, temp_parquet):
|
||||
"""Test reading Parquet file"""
|
||||
result = await pandas_tools.read_parquet(temp_parquet, name='parquet_test')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 3
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_read_json(pandas_tools, temp_json):
|
||||
"""Test reading JSON file"""
|
||||
result = await pandas_tools.read_json(temp_json, name='json_test')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_to_csv(pandas_tools, temp_csv, tmp_path):
|
||||
"""Test exporting to CSV"""
|
||||
# First load some data
|
||||
await pandas_tools.read_csv(temp_csv, name='export_test')
|
||||
|
||||
# Export to new file
|
||||
output_path = str(tmp_path / 'output.csv')
|
||||
result = await pandas_tools.to_csv('export_test', output_path)
|
||||
|
||||
assert result['success'] is True
|
||||
assert os.path.exists(output_path)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_to_parquet(pandas_tools, temp_csv, tmp_path):
|
||||
"""Test exporting to Parquet"""
|
||||
await pandas_tools.read_csv(temp_csv, name='parquet_export')
|
||||
|
||||
output_path = str(tmp_path / 'output.parquet')
|
||||
result = await pandas_tools.to_parquet('parquet_export', output_path)
|
||||
|
||||
assert result['success'] is True
|
||||
assert os.path.exists(output_path)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_describe(pandas_tools, temp_csv):
|
||||
"""Test describe statistics"""
|
||||
await pandas_tools.read_csv(temp_csv, name='describe_test')
|
||||
|
||||
result = await pandas_tools.describe('describe_test')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert 'shape' in result
|
||||
assert result['shape']['rows'] == 5
|
||||
assert 'statistics' in result
|
||||
assert 'null_counts' in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_head(pandas_tools, temp_csv):
|
||||
"""Test getting first N rows"""
|
||||
await pandas_tools.read_csv(temp_csv, name='head_test')
|
||||
|
||||
result = await pandas_tools.head('head_test', n=3)
|
||||
|
||||
assert result['returned_rows'] == 3
|
||||
assert len(result['data']) == 3
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_tail(pandas_tools, temp_csv):
|
||||
"""Test getting last N rows"""
|
||||
await pandas_tools.read_csv(temp_csv, name='tail_test')
|
||||
|
||||
result = await pandas_tools.tail('tail_test', n=2)
|
||||
|
||||
assert result['returned_rows'] == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_filter(pandas_tools, temp_csv):
|
||||
"""Test filtering rows"""
|
||||
await pandas_tools.read_csv(temp_csv, name='filter_test')
|
||||
|
||||
result = await pandas_tools.filter('filter_test', 'value > 25')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 3 # 30.5, 40.0, 50.5
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_filter_invalid_condition(pandas_tools, temp_csv):
|
||||
"""Test filter with invalid condition"""
|
||||
await pandas_tools.read_csv(temp_csv, name='filter_error')
|
||||
|
||||
result = await pandas_tools.filter('filter_error', 'invalid_column > 0')
|
||||
|
||||
assert 'error' in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_select(pandas_tools, temp_csv):
|
||||
"""Test selecting columns"""
|
||||
await pandas_tools.read_csv(temp_csv, name='select_test')
|
||||
|
||||
result = await pandas_tools.select('select_test', ['id', 'name'])
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['columns'] == ['id', 'name']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_select_invalid_column(pandas_tools, temp_csv):
|
||||
"""Test select with invalid column"""
|
||||
await pandas_tools.read_csv(temp_csv, name='select_error')
|
||||
|
||||
result = await pandas_tools.select('select_error', ['id', 'nonexistent'])
|
||||
|
||||
assert 'error' in result
|
||||
assert 'available_columns' in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_groupby(pandas_tools, tmp_path):
|
||||
"""Test groupby aggregation"""
|
||||
# Create test data with groups
|
||||
csv_path = tmp_path / 'groupby.csv'
|
||||
df = pd.DataFrame({
|
||||
'category': ['A', 'A', 'B', 'B'],
|
||||
'value': [10, 20, 30, 40]
|
||||
})
|
||||
df.to_csv(csv_path, index=False)
|
||||
|
||||
await pandas_tools.read_csv(str(csv_path), name='groupby_test')
|
||||
|
||||
result = await pandas_tools.groupby(
|
||||
'groupby_test',
|
||||
by='category',
|
||||
agg={'value': 'sum'}
|
||||
)
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 2 # Two groups: A, B
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_join(pandas_tools, tmp_path):
|
||||
"""Test joining DataFrames"""
|
||||
# Create left table
|
||||
left_path = tmp_path / 'left.csv'
|
||||
pd.DataFrame({
|
||||
'id': [1, 2, 3],
|
||||
'name': ['A', 'B', 'C']
|
||||
}).to_csv(left_path, index=False)
|
||||
|
||||
# Create right table
|
||||
right_path = tmp_path / 'right.csv'
|
||||
pd.DataFrame({
|
||||
'id': [1, 2, 4],
|
||||
'value': [100, 200, 400]
|
||||
}).to_csv(right_path, index=False)
|
||||
|
||||
await pandas_tools.read_csv(str(left_path), name='left')
|
||||
await pandas_tools.read_csv(str(right_path), name='right')
|
||||
|
||||
result = await pandas_tools.join('left', 'right', on='id', how='inner')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 2 # Only id 1 and 2 match
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_list_data(pandas_tools, temp_csv):
|
||||
"""Test listing all DataFrames"""
|
||||
await pandas_tools.read_csv(temp_csv, name='list_test1')
|
||||
await pandas_tools.read_csv(temp_csv, name='list_test2')
|
||||
|
||||
result = await pandas_tools.list_data()
|
||||
|
||||
assert result['count'] == 2
|
||||
refs = [df['ref'] for df in result['dataframes']]
|
||||
assert 'list_test1' in refs
|
||||
assert 'list_test2' in refs
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_drop_data(pandas_tools, temp_csv):
|
||||
"""Test dropping DataFrame"""
|
||||
await pandas_tools.read_csv(temp_csv, name='drop_test')
|
||||
|
||||
result = await pandas_tools.drop_data('drop_test')
|
||||
|
||||
assert result['success'] is True
|
||||
|
||||
# Verify it's gone
|
||||
list_result = await pandas_tools.list_data()
|
||||
refs = [df['ref'] for df in list_result['dataframes']]
|
||||
assert 'drop_test' not in refs
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_drop_nonexistent(pandas_tools):
|
||||
"""Test dropping nonexistent DataFrame"""
|
||||
result = await pandas_tools.drop_data('nonexistent')
|
||||
|
||||
assert 'error' in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_operations_on_nonexistent(pandas_tools):
|
||||
"""Test operations on nonexistent data_ref"""
|
||||
result = await pandas_tools.describe('nonexistent')
|
||||
assert 'error' in result
|
||||
|
||||
result = await pandas_tools.head('nonexistent')
|
||||
assert 'error' in result
|
||||
|
||||
result = await pandas_tools.filter('nonexistent', 'x > 0')
|
||||
assert 'error' in result
|
||||
338
mcp-servers/data-platform/tests/test_postgres_tools.py
Normal file
338
mcp-servers/data-platform/tests/test_postgres_tools.py
Normal file
@@ -0,0 +1,338 @@
|
||||
"""
|
||||
Unit tests for PostgreSQL MCP tools.
|
||||
"""
|
||||
import pytest
|
||||
from unittest.mock import Mock, AsyncMock, patch, MagicMock
|
||||
import pandas as pd
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_config():
|
||||
"""Mock configuration"""
|
||||
return {
|
||||
'postgres_url': 'postgresql://test:test@localhost:5432/testdb',
|
||||
'max_rows': 100000
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def postgres_tools(mock_config):
|
||||
"""Create PostgresTools instance with mocked config"""
|
||||
with patch('mcp_server.postgres_tools.load_config', return_value=mock_config):
|
||||
from mcp_server.postgres_tools import PostgresTools
|
||||
from mcp_server.data_store import DataStore
|
||||
|
||||
# Reset store
|
||||
store = DataStore.get_instance()
|
||||
store._dataframes = {}
|
||||
store._metadata = {}
|
||||
|
||||
tools = PostgresTools()
|
||||
tools.config = mock_config
|
||||
return tools
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_connect_no_config():
|
||||
"""Test pg_connect when no PostgreSQL configured"""
|
||||
with patch('mcp_server.postgres_tools.load_config', return_value={'postgres_url': None}):
|
||||
from mcp_server.postgres_tools import PostgresTools
|
||||
|
||||
tools = PostgresTools()
|
||||
tools.config = {'postgres_url': None}
|
||||
|
||||
result = await tools.pg_connect()
|
||||
|
||||
assert result['connected'] is False
|
||||
assert 'not configured' in result['error'].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_connect_success(postgres_tools):
|
||||
"""Test successful pg_connect"""
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetchval = AsyncMock(side_effect=[
|
||||
'PostgreSQL 15.1', # version
|
||||
'testdb', # database name
|
||||
'testuser', # user
|
||||
None # PostGIS check fails
|
||||
])
|
||||
mock_conn.close = AsyncMock()
|
||||
|
||||
# Create proper async context manager
|
||||
mock_cm = AsyncMock()
|
||||
mock_cm.__aenter__ = AsyncMock(return_value=mock_conn)
|
||||
mock_cm.__aexit__ = AsyncMock(return_value=None)
|
||||
|
||||
mock_pool = MagicMock()
|
||||
mock_pool.acquire = MagicMock(return_value=mock_cm)
|
||||
|
||||
# Use AsyncMock for create_pool since it's awaited
|
||||
with patch('asyncpg.create_pool', new=AsyncMock(return_value=mock_pool)):
|
||||
postgres_tools.pool = None
|
||||
result = await postgres_tools.pg_connect()
|
||||
|
||||
assert result['connected'] is True
|
||||
assert result['database'] == 'testdb'
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_query_success(postgres_tools):
|
||||
"""Test successful pg_query"""
|
||||
mock_rows = [
|
||||
{'id': 1, 'name': 'Alice'},
|
||||
{'id': 2, 'name': 'Bob'}
|
||||
]
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=mock_rows)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_query('SELECT * FROM users', name='users_data')
|
||||
|
||||
assert 'data_ref' in result
|
||||
assert result['rows'] == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_query_empty_result(postgres_tools):
|
||||
"""Test pg_query with no results"""
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=[])
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_query('SELECT * FROM empty_table')
|
||||
|
||||
assert result['data_ref'] is None
|
||||
assert result['rows'] == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_execute_success(postgres_tools):
|
||||
"""Test successful pg_execute"""
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.execute = AsyncMock(return_value='INSERT 0 3')
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_execute('INSERT INTO users VALUES (1, 2, 3)')
|
||||
|
||||
assert result['success'] is True
|
||||
assert result['affected_rows'] == 3
|
||||
assert result['command'] == 'INSERT'
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_tables(postgres_tools):
|
||||
"""Test listing tables"""
|
||||
mock_rows = [
|
||||
{'table_name': 'users', 'table_type': 'BASE TABLE', 'column_count': 5},
|
||||
{'table_name': 'orders', 'table_type': 'BASE TABLE', 'column_count': 8}
|
||||
]
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=mock_rows)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_tables(schema='public')
|
||||
|
||||
assert result['schema'] == 'public'
|
||||
assert result['count'] == 2
|
||||
assert len(result['tables']) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_columns(postgres_tools):
|
||||
"""Test getting column info"""
|
||||
mock_rows = [
|
||||
{
|
||||
'column_name': 'id',
|
||||
'data_type': 'integer',
|
||||
'udt_name': 'int4',
|
||||
'is_nullable': 'NO',
|
||||
'column_default': "nextval('users_id_seq'::regclass)",
|
||||
'character_maximum_length': None,
|
||||
'numeric_precision': 32
|
||||
},
|
||||
{
|
||||
'column_name': 'name',
|
||||
'data_type': 'character varying',
|
||||
'udt_name': 'varchar',
|
||||
'is_nullable': 'YES',
|
||||
'column_default': None,
|
||||
'character_maximum_length': 255,
|
||||
'numeric_precision': None
|
||||
}
|
||||
]
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=mock_rows)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_columns(table='users')
|
||||
|
||||
assert result['table'] == 'public.users'
|
||||
assert result['column_count'] == 2
|
||||
assert result['columns'][0]['name'] == 'id'
|
||||
assert result['columns'][0]['nullable'] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_pg_schemas(postgres_tools):
|
||||
"""Test listing schemas"""
|
||||
mock_rows = [
|
||||
{'schema_name': 'public'},
|
||||
{'schema_name': 'app'}
|
||||
]
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=mock_rows)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_schemas()
|
||||
|
||||
assert result['count'] == 2
|
||||
assert 'public' in result['schemas']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_st_tables(postgres_tools):
|
||||
"""Test listing PostGIS tables"""
|
||||
mock_rows = [
|
||||
{
|
||||
'table_name': 'locations',
|
||||
'geometry_column': 'geom',
|
||||
'geometry_type': 'POINT',
|
||||
'srid': 4326,
|
||||
'coord_dimension': 2
|
||||
}
|
||||
]
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(return_value=mock_rows)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.st_tables()
|
||||
|
||||
assert result['count'] == 1
|
||||
assert result['postgis_tables'][0]['table'] == 'locations'
|
||||
assert result['postgis_tables'][0]['srid'] == 4326
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_st_tables_no_postgis(postgres_tools):
|
||||
"""Test st_tables when PostGIS not installed"""
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(side_effect=Exception("relation \"geometry_columns\" does not exist"))
|
||||
|
||||
# Create proper async context manager
|
||||
mock_cm = AsyncMock()
|
||||
mock_cm.__aenter__ = AsyncMock(return_value=mock_conn)
|
||||
mock_cm.__aexit__ = AsyncMock(return_value=None)
|
||||
|
||||
mock_pool = MagicMock()
|
||||
mock_pool.acquire = MagicMock(return_value=mock_cm)
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.st_tables()
|
||||
|
||||
assert 'error' in result
|
||||
assert 'PostGIS' in result['error']
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_st_extent(postgres_tools):
|
||||
"""Test getting geometry bounding box"""
|
||||
mock_row = {
|
||||
'xmin': -122.5,
|
||||
'ymin': 37.5,
|
||||
'xmax': -122.0,
|
||||
'ymax': 38.0
|
||||
}
|
||||
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetchrow = AsyncMock(return_value=mock_row)
|
||||
|
||||
mock_pool = AsyncMock()
|
||||
mock_pool.acquire = MagicMock(return_value=AsyncMock(
|
||||
__aenter__=AsyncMock(return_value=mock_conn),
|
||||
__aexit__=AsyncMock()
|
||||
))
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.st_extent(table='locations', column='geom')
|
||||
|
||||
assert result['bbox']['xmin'] == -122.5
|
||||
assert result['bbox']['ymax'] == 38.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_error_handling(postgres_tools):
|
||||
"""Test error handling for database errors"""
|
||||
mock_conn = AsyncMock()
|
||||
mock_conn.fetch = AsyncMock(side_effect=Exception("Connection refused"))
|
||||
|
||||
# Create proper async context manager
|
||||
mock_cm = AsyncMock()
|
||||
mock_cm.__aenter__ = AsyncMock(return_value=mock_conn)
|
||||
mock_cm.__aexit__ = AsyncMock(return_value=None)
|
||||
|
||||
mock_pool = MagicMock()
|
||||
mock_pool.acquire = MagicMock(return_value=mock_cm)
|
||||
|
||||
postgres_tools.pool = mock_pool
|
||||
|
||||
result = await postgres_tools.pg_query('SELECT 1')
|
||||
|
||||
assert 'error' in result
|
||||
assert 'Connection refused' in result['error']
|
||||
25
plugins/data-platform/.claude-plugin/plugin.json
Normal file
25
plugins/data-platform/.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"name": "data-platform",
|
||||
"version": "1.0.0",
|
||||
"description": "Data engineering tools with pandas, PostgreSQL/PostGIS, and dbt integration",
|
||||
"author": {
|
||||
"name": "Leo Miranda",
|
||||
"email": "leobmiranda@gmail.com"
|
||||
},
|
||||
"homepage": "https://gitea.hotserv.cloud/personal-projects/leo-claude-mktplace/src/branch/main/plugins/data-platform/README.md",
|
||||
"repository": "https://gitea.hotserv.cloud/personal-projects/leo-claude-mktplace.git",
|
||||
"license": "MIT",
|
||||
"keywords": [
|
||||
"pandas",
|
||||
"postgresql",
|
||||
"postgis",
|
||||
"dbt",
|
||||
"data-engineering",
|
||||
"etl",
|
||||
"dataframe"
|
||||
],
|
||||
"hooks": "hooks/hooks.json",
|
||||
"commands": ["./commands/"],
|
||||
"agents": ["./agents/"],
|
||||
"mcpServers": ["./.mcp.json"]
|
||||
}
|
||||
10
plugins/data-platform/.mcp.json
Normal file
10
plugins/data-platform/.mcp.json
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"mcpServers": {
|
||||
"data-platform": {
|
||||
"type": "stdio",
|
||||
"command": "${CLAUDE_PLUGIN_ROOT}/mcp-servers/data-platform/.venv/bin/python",
|
||||
"args": ["-m", "mcp_server.server"],
|
||||
"cwd": "${CLAUDE_PLUGIN_ROOT}/mcp-servers/data-platform"
|
||||
}
|
||||
}
|
||||
}
|
||||
119
plugins/data-platform/README.md
Normal file
119
plugins/data-platform/README.md
Normal file
@@ -0,0 +1,119 @@
|
||||
# data-platform Plugin
|
||||
|
||||
Data engineering tools with pandas, PostgreSQL/PostGIS, and dbt integration for Claude Code.
|
||||
|
||||
## Features
|
||||
|
||||
- **pandas Operations**: Load, transform, and export DataFrames with persistent data_ref system
|
||||
- **PostgreSQL/PostGIS**: Database queries with connection pooling and spatial data support
|
||||
- **dbt Integration**: Build tool wrapper with pre-execution validation
|
||||
|
||||
## Installation
|
||||
|
||||
This plugin is part of the leo-claude-mktplace. Install via:
|
||||
|
||||
```bash
|
||||
# From marketplace
|
||||
claude plugins install leo-claude-mktplace/data-platform
|
||||
|
||||
# Setup MCP server venv
|
||||
cd ~/.claude/plugins/marketplaces/leo-claude-mktplace/mcp-servers/data-platform
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### PostgreSQL (Optional)
|
||||
|
||||
Create `~/.config/claude/postgres.env`:
|
||||
|
||||
```env
|
||||
POSTGRES_URL=postgresql://user:password@host:5432/database
|
||||
```
|
||||
|
||||
### dbt (Optional)
|
||||
|
||||
Add to project `.env`:
|
||||
|
||||
```env
|
||||
DBT_PROJECT_DIR=/path/to/dbt/project
|
||||
DBT_PROFILES_DIR=~/.dbt
|
||||
```
|
||||
|
||||
## Commands
|
||||
|
||||
| Command | Description |
|
||||
|---------|-------------|
|
||||
| `/initial-setup` | Interactive setup wizard for PostgreSQL and dbt configuration |
|
||||
| `/ingest` | Load data from files or database |
|
||||
| `/profile` | Generate data profile and statistics |
|
||||
| `/schema` | Show database/DataFrame schema |
|
||||
| `/explain` | Explain dbt model lineage |
|
||||
| `/lineage` | Visualize data dependencies |
|
||||
| `/run` | Execute dbt models |
|
||||
|
||||
## Agents
|
||||
|
||||
| Agent | Description |
|
||||
|-------|-------------|
|
||||
| `data-ingestion` | Data loading and transformation specialist |
|
||||
| `data-analysis` | Exploration and profiling specialist |
|
||||
|
||||
## data_ref System
|
||||
|
||||
All DataFrame operations use a `data_ref` system for persistence:
|
||||
|
||||
```
|
||||
# Load returns a reference
|
||||
read_csv("data.csv") → {"data_ref": "sales_data"}
|
||||
|
||||
# Use reference in subsequent operations
|
||||
filter("sales_data", "amount > 100") → {"data_ref": "sales_data_filtered"}
|
||||
describe("sales_data_filtered") → {statistics}
|
||||
```
|
||||
|
||||
## Example Workflow
|
||||
|
||||
```
|
||||
/ingest data/sales.csv
|
||||
# → Loaded 50,000 rows as "sales_data"
|
||||
|
||||
/profile sales_data
|
||||
# → Statistical summary, null counts, quality assessment
|
||||
|
||||
/schema orders
|
||||
# → Column names, types, constraints
|
||||
|
||||
/lineage fct_orders
|
||||
# → Dependency graph showing upstream/downstream models
|
||||
|
||||
/run dim_customers
|
||||
# → Pre-validates then executes dbt model
|
||||
```
|
||||
|
||||
## Tools Summary
|
||||
|
||||
### pandas (14 tools)
|
||||
`read_csv`, `read_parquet`, `read_json`, `to_csv`, `to_parquet`, `describe`, `head`, `tail`, `filter`, `select`, `groupby`, `join`, `list_data`, `drop_data`
|
||||
|
||||
### PostgreSQL (6 tools)
|
||||
`pg_connect`, `pg_query`, `pg_execute`, `pg_tables`, `pg_columns`, `pg_schemas`
|
||||
|
||||
### PostGIS (4 tools)
|
||||
`st_tables`, `st_geometry_type`, `st_srid`, `st_extent`
|
||||
|
||||
### dbt (8 tools)
|
||||
`dbt_parse`, `dbt_run`, `dbt_test`, `dbt_build`, `dbt_compile`, `dbt_ls`, `dbt_docs_generate`, `dbt_lineage`
|
||||
|
||||
## Memory Management
|
||||
|
||||
- Default limit: 100,000 rows per DataFrame
|
||||
- Configure via `DATA_PLATFORM_MAX_ROWS` environment variable
|
||||
- Use `chunk_size` parameter for large files
|
||||
- Monitor with `list_data` tool
|
||||
|
||||
## SessionStart Hook
|
||||
|
||||
On session start, the plugin checks PostgreSQL connectivity and displays a warning if unavailable. This is non-blocking - pandas and dbt tools remain available.
|
||||
98
plugins/data-platform/agents/data-analysis.md
Normal file
98
plugins/data-platform/agents/data-analysis.md
Normal file
@@ -0,0 +1,98 @@
|
||||
# Data Analysis Agent
|
||||
|
||||
You are a data analysis specialist. Your role is to help users explore, profile, and understand their data.
|
||||
|
||||
## Capabilities
|
||||
|
||||
- Profile datasets with statistical summaries
|
||||
- Explore database schemas and structures
|
||||
- Analyze dbt model lineage and dependencies
|
||||
- Provide data quality assessments
|
||||
- Generate insights and recommendations
|
||||
|
||||
## Available Tools
|
||||
|
||||
### Data Exploration
|
||||
- `describe` - Statistical summary
|
||||
- `head` - Preview first rows
|
||||
- `tail` - Preview last rows
|
||||
- `list_data` - List available DataFrames
|
||||
|
||||
### Database Exploration
|
||||
- `pg_connect` - Check database connection
|
||||
- `pg_tables` - List all tables
|
||||
- `pg_columns` - Get column details
|
||||
- `pg_schemas` - List schemas
|
||||
|
||||
### PostGIS Exploration
|
||||
- `st_tables` - List spatial tables
|
||||
- `st_geometry_type` - Get geometry type
|
||||
- `st_srid` - Get coordinate system
|
||||
- `st_extent` - Get bounding box
|
||||
|
||||
### dbt Analysis
|
||||
- `dbt_lineage` - Model dependencies
|
||||
- `dbt_ls` - List resources
|
||||
- `dbt_compile` - View compiled SQL
|
||||
- `dbt_docs_generate` - Generate docs
|
||||
|
||||
## Workflow Guidelines
|
||||
|
||||
1. **Understand the question**:
|
||||
- What does the user want to know?
|
||||
- What data is available?
|
||||
- What level of detail is needed?
|
||||
|
||||
2. **Explore the data**:
|
||||
- Start with `list_data` or `pg_tables`
|
||||
- Get schema info with `describe` or `pg_columns`
|
||||
- Preview with `head` to understand content
|
||||
|
||||
3. **Profile thoroughly**:
|
||||
- Use `describe` for statistics
|
||||
- Check for nulls, outliers, patterns
|
||||
- Note data quality issues
|
||||
|
||||
4. **Analyze dependencies** (for dbt):
|
||||
- Use `dbt_lineage` to trace data flow
|
||||
- Understand transformations
|
||||
- Identify critical paths
|
||||
|
||||
5. **Provide insights**:
|
||||
- Summarize findings clearly
|
||||
- Highlight potential issues
|
||||
- Recommend next steps
|
||||
|
||||
## Analysis Patterns
|
||||
|
||||
### Data Quality Check
|
||||
1. `describe` - Get statistics
|
||||
2. Check null percentages
|
||||
3. Identify outliers (min/max vs mean)
|
||||
4. Flag suspicious patterns
|
||||
|
||||
### Schema Comparison
|
||||
1. `pg_columns` - Get table A schema
|
||||
2. `pg_columns` - Get table B schema
|
||||
3. Compare column names, types
|
||||
4. Identify mismatches
|
||||
|
||||
### Lineage Analysis
|
||||
1. `dbt_lineage` - Get model graph
|
||||
2. Trace upstream sources
|
||||
3. Identify downstream impact
|
||||
4. Document critical path
|
||||
|
||||
## Example Interactions
|
||||
|
||||
**User**: What's in the sales_data DataFrame?
|
||||
**Agent**: Uses `describe`, `head`, explains columns, statistics, patterns
|
||||
|
||||
**User**: What tables are in the database?
|
||||
**Agent**: Uses `pg_tables`, shows list with column counts
|
||||
|
||||
**User**: How does the dim_customers model work?
|
||||
**Agent**: Uses `dbt_lineage`, `dbt_compile`, explains dependencies and SQL
|
||||
|
||||
**User**: Is there any spatial data?
|
||||
**Agent**: Uses `st_tables`, shows PostGIS tables with geometry types
|
||||
81
plugins/data-platform/agents/data-ingestion.md
Normal file
81
plugins/data-platform/agents/data-ingestion.md
Normal file
@@ -0,0 +1,81 @@
|
||||
# Data Ingestion Agent
|
||||
|
||||
You are a data ingestion specialist. Your role is to help users load, transform, and prepare data for analysis.
|
||||
|
||||
## Capabilities
|
||||
|
||||
- Load data from CSV, Parquet, JSON files
|
||||
- Query PostgreSQL databases
|
||||
- Transform data using filter, select, groupby, join operations
|
||||
- Export data to various formats
|
||||
- Handle large datasets with chunking
|
||||
|
||||
## Available Tools
|
||||
|
||||
### File Operations
|
||||
- `read_csv` - Load CSV files with optional chunking
|
||||
- `read_parquet` - Load Parquet files
|
||||
- `read_json` - Load JSON/JSONL files
|
||||
- `to_csv` - Export to CSV
|
||||
- `to_parquet` - Export to Parquet
|
||||
|
||||
### Data Transformation
|
||||
- `filter` - Filter rows by condition
|
||||
- `select` - Select specific columns
|
||||
- `groupby` - Group and aggregate
|
||||
- `join` - Join two DataFrames
|
||||
|
||||
### Database Operations
|
||||
- `pg_query` - Execute SELECT queries
|
||||
- `pg_execute` - Execute INSERT/UPDATE/DELETE
|
||||
- `pg_tables` - List available tables
|
||||
|
||||
### Management
|
||||
- `list_data` - List all stored DataFrames
|
||||
- `drop_data` - Remove DataFrame from store
|
||||
|
||||
## Workflow Guidelines
|
||||
|
||||
1. **Understand the data source**:
|
||||
- Ask about file location/format
|
||||
- For database, understand table structure
|
||||
- Clarify any filters or transformations needed
|
||||
|
||||
2. **Load data efficiently**:
|
||||
- Use appropriate reader for file format
|
||||
- For large files (>100k rows), use chunking
|
||||
- Name DataFrames meaningfully
|
||||
|
||||
3. **Transform as needed**:
|
||||
- Apply filters early to reduce data size
|
||||
- Select only needed columns
|
||||
- Join related datasets
|
||||
|
||||
4. **Validate results**:
|
||||
- Check row counts after transformations
|
||||
- Verify data types are correct
|
||||
- Preview results with `head`
|
||||
|
||||
5. **Store with meaningful names**:
|
||||
- Use descriptive data_ref names
|
||||
- Document the source and transformations
|
||||
|
||||
## Memory Management
|
||||
|
||||
- Default row limit: 100,000 rows
|
||||
- For larger datasets, suggest:
|
||||
- Filtering before loading
|
||||
- Using chunk_size parameter
|
||||
- Aggregating to reduce size
|
||||
- Storing to Parquet for efficient retrieval
|
||||
|
||||
## Example Interactions
|
||||
|
||||
**User**: Load the sales data from data/sales.csv
|
||||
**Agent**: Uses `read_csv` to load, reports data_ref, row count, columns
|
||||
|
||||
**User**: Filter to only Q4 2024 sales
|
||||
**Agent**: Uses `filter` with date condition, stores filtered result
|
||||
|
||||
**User**: Join with customer data
|
||||
**Agent**: Uses `join` to combine, validates result counts
|
||||
90
plugins/data-platform/claude-md-integration.md
Normal file
90
plugins/data-platform/claude-md-integration.md
Normal file
@@ -0,0 +1,90 @@
|
||||
# data-platform Plugin - CLAUDE.md Integration
|
||||
|
||||
Add this section to your project's CLAUDE.md to enable data-platform plugin features.
|
||||
|
||||
## Suggested CLAUDE.md Section
|
||||
|
||||
```markdown
|
||||
## Data Platform Integration
|
||||
|
||||
This project uses the data-platform plugin for data engineering workflows.
|
||||
|
||||
### Configuration
|
||||
|
||||
**PostgreSQL**: Credentials in `~/.config/claude/postgres.env`
|
||||
**dbt**: Project path auto-detected from `dbt_project.yml`
|
||||
|
||||
### Available Commands
|
||||
|
||||
| Command | Purpose |
|
||||
|---------|---------|
|
||||
| `/ingest` | Load data from files or database |
|
||||
| `/profile` | Generate statistical profile |
|
||||
| `/schema` | Show schema information |
|
||||
| `/explain` | Explain dbt model |
|
||||
| `/lineage` | Show data lineage |
|
||||
| `/run` | Execute dbt models |
|
||||
|
||||
### data_ref Convention
|
||||
|
||||
DataFrames are stored with references. Use meaningful names:
|
||||
- `raw_*` for source data
|
||||
- `stg_*` for staged/cleaned data
|
||||
- `dim_*` for dimension tables
|
||||
- `fct_*` for fact tables
|
||||
- `rpt_*` for reports
|
||||
|
||||
### dbt Workflow
|
||||
|
||||
1. Always validate before running: `/run` includes automatic `dbt_parse`
|
||||
2. For dbt 1.9+, check for deprecated syntax before commits
|
||||
3. Use `/lineage` to understand impact of changes
|
||||
|
||||
### Database Access
|
||||
|
||||
PostgreSQL tools require POSTGRES_URL configuration:
|
||||
- Read-only queries: `pg_query`
|
||||
- Write operations: `pg_execute`
|
||||
- Schema exploration: `pg_tables`, `pg_columns`
|
||||
|
||||
PostGIS spatial data:
|
||||
- List spatial tables: `st_tables`
|
||||
- Check geometry: `st_geometry_type`, `st_srid`, `st_extent`
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
Add to project `.env` if needed:
|
||||
|
||||
```env
|
||||
# dbt configuration
|
||||
DBT_PROJECT_DIR=./transform
|
||||
DBT_PROFILES_DIR=~/.dbt
|
||||
|
||||
# Memory limits
|
||||
DATA_PLATFORM_MAX_ROWS=100000
|
||||
```
|
||||
|
||||
## Typical Workflows
|
||||
|
||||
### Data Exploration
|
||||
```
|
||||
/ingest data/raw_customers.csv
|
||||
/profile raw_customers
|
||||
/schema
|
||||
```
|
||||
|
||||
### ETL Development
|
||||
```
|
||||
/schema orders # Understand source
|
||||
/explain stg_orders # Understand transformation
|
||||
/run stg_orders # Test the model
|
||||
/lineage fct_orders # Check downstream impact
|
||||
```
|
||||
|
||||
### Database Analysis
|
||||
```
|
||||
/schema # List all tables
|
||||
pg_columns orders # Detailed schema
|
||||
st_tables # Find spatial data
|
||||
```
|
||||
44
plugins/data-platform/commands/explain.md
Normal file
44
plugins/data-platform/commands/explain.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# /explain - dbt Model Explanation
|
||||
|
||||
Explain a dbt model's purpose, dependencies, and SQL logic.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/explain <model_name>
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Get model info**:
|
||||
- Use `dbt_lineage` to get model metadata
|
||||
- Extract description, tags, materialization
|
||||
|
||||
2. **Analyze dependencies**:
|
||||
- Show upstream models (what this depends on)
|
||||
- Show downstream models (what depends on this)
|
||||
- Visualize as dependency tree
|
||||
|
||||
3. **Compile SQL**:
|
||||
- Use `dbt_compile` to get rendered SQL
|
||||
- Explain key transformations
|
||||
|
||||
4. **Report**:
|
||||
- Model purpose (from description)
|
||||
- Materialization strategy
|
||||
- Dependency graph
|
||||
- Key SQL logic explained
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/explain dim_customers
|
||||
/explain fct_orders
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `dbt_lineage` - Get model dependencies
|
||||
- `dbt_compile` - Get compiled SQL
|
||||
- `dbt_ls` - List related resources
|
||||
44
plugins/data-platform/commands/ingest.md
Normal file
44
plugins/data-platform/commands/ingest.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# /ingest - Data Ingestion
|
||||
|
||||
Load data from files or database into the data platform.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/ingest [source]
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Identify data source**:
|
||||
- If source is a file path, determine format (CSV, Parquet, JSON)
|
||||
- If source is "db" or a table name, query PostgreSQL
|
||||
|
||||
2. **Load data**:
|
||||
- For files: Use `read_csv`, `read_parquet`, or `read_json`
|
||||
- For database: Use `pg_query` with appropriate SELECT
|
||||
|
||||
3. **Validate**:
|
||||
- Check row count against limits
|
||||
- If exceeds 100k rows, suggest chunking or filtering
|
||||
|
||||
4. **Report**:
|
||||
- Show data_ref, row count, columns, and memory usage
|
||||
- Preview first few rows
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/ingest data/sales.csv
|
||||
/ingest data/customers.parquet
|
||||
/ingest "SELECT * FROM orders WHERE created_at > '2024-01-01'"
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `read_csv` - Load CSV files
|
||||
- `read_parquet` - Load Parquet files
|
||||
- `read_json` - Load JSON/JSONL files
|
||||
- `pg_query` - Query PostgreSQL database
|
||||
- `list_data` - List loaded DataFrames
|
||||
231
plugins/data-platform/commands/initial-setup.md
Normal file
231
plugins/data-platform/commands/initial-setup.md
Normal file
@@ -0,0 +1,231 @@
|
||||
---
|
||||
description: Interactive setup wizard for data-platform plugin - configures MCP server and optional PostgreSQL/dbt
|
||||
---
|
||||
|
||||
# Data Platform Setup Wizard
|
||||
|
||||
This command sets up the data-platform plugin with pandas, PostgreSQL, and dbt integration.
|
||||
|
||||
## Important Context
|
||||
|
||||
- **This command uses Bash, Read, Write, and AskUserQuestion tools** - NOT MCP tools
|
||||
- **MCP tools won't work until after setup + session restart**
|
||||
- **PostgreSQL and dbt are optional** - pandas tools work without them
|
||||
|
||||
---
|
||||
|
||||
## Phase 1: Environment Validation
|
||||
|
||||
### Step 1.1: Check Python Version
|
||||
|
||||
```bash
|
||||
python3 --version
|
||||
```
|
||||
|
||||
Requires Python 3.10+. If below, stop setup and inform user.
|
||||
|
||||
### Step 1.2: Check for Required Libraries
|
||||
|
||||
```bash
|
||||
python3 -c "import sys; print(f'Python {sys.version_info.major}.{sys.version_info.minor}')"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Phase 2: MCP Server Setup
|
||||
|
||||
### Step 2.1: Locate Data Platform MCP Server
|
||||
|
||||
The MCP server should be at the marketplace root:
|
||||
|
||||
```bash
|
||||
# If running from installed marketplace
|
||||
ls -la ~/.claude/plugins/marketplaces/leo-claude-mktplace/mcp-servers/data-platform/ 2>/dev/null || echo "NOT_FOUND_INSTALLED"
|
||||
|
||||
# If running from source
|
||||
ls -la ~/claude-plugins-work/mcp-servers/data-platform/ 2>/dev/null || echo "NOT_FOUND_SOURCE"
|
||||
```
|
||||
|
||||
Determine the correct path based on which exists.
|
||||
|
||||
### Step 2.2: Check Virtual Environment
|
||||
|
||||
```bash
|
||||
ls -la /path/to/mcp-servers/data-platform/.venv/bin/python 2>/dev/null && echo "VENV_EXISTS" || echo "VENV_MISSING"
|
||||
```
|
||||
|
||||
### Step 2.3: Create Virtual Environment (if missing)
|
||||
|
||||
```bash
|
||||
cd /path/to/mcp-servers/data-platform && python3 -m venv .venv && source .venv/bin/activate && pip install --upgrade pip && pip install -r requirements.txt && deactivate
|
||||
```
|
||||
|
||||
**Note:** This may take a few minutes due to pandas, pyarrow, and dbt dependencies.
|
||||
|
||||
---
|
||||
|
||||
## Phase 3: PostgreSQL Configuration (Optional)
|
||||
|
||||
### Step 3.1: Ask About PostgreSQL
|
||||
|
||||
Use AskUserQuestion:
|
||||
- Question: "Do you want to configure PostgreSQL database access?"
|
||||
- Header: "PostgreSQL"
|
||||
- Options:
|
||||
- "Yes, I have a PostgreSQL database"
|
||||
- "No, I'll only use pandas/dbt tools"
|
||||
|
||||
**If user chooses "No":** Skip to Phase 4.
|
||||
|
||||
### Step 3.2: Create Config Directory
|
||||
|
||||
```bash
|
||||
mkdir -p ~/.config/claude
|
||||
```
|
||||
|
||||
### Step 3.3: Check PostgreSQL Configuration
|
||||
|
||||
```bash
|
||||
cat ~/.config/claude/postgres.env 2>/dev/null || echo "FILE_NOT_FOUND"
|
||||
```
|
||||
|
||||
**If file exists with valid URL:** Skip to Step 3.6.
|
||||
**If missing or has placeholders:** Continue.
|
||||
|
||||
### Step 3.4: Gather PostgreSQL Information
|
||||
|
||||
Use AskUserQuestion:
|
||||
- Question: "What is your PostgreSQL connection URL format?"
|
||||
- Header: "DB Format"
|
||||
- Options:
|
||||
- "Standard: postgresql://user:pass@host:5432/db"
|
||||
- "PostGIS: postgresql://user:pass@host:5432/db (with PostGIS extension)"
|
||||
- "Other (I'll provide the full URL)"
|
||||
|
||||
Ask user to provide the connection URL.
|
||||
|
||||
### Step 3.5: Create Configuration File
|
||||
|
||||
```bash
|
||||
cat > ~/.config/claude/postgres.env << 'EOF'
|
||||
# PostgreSQL Configuration
|
||||
# Generated by data-platform /initial-setup
|
||||
|
||||
POSTGRES_URL=<USER_PROVIDED_URL>
|
||||
EOF
|
||||
chmod 600 ~/.config/claude/postgres.env
|
||||
```
|
||||
|
||||
### Step 3.6: Test PostgreSQL Connection (if configured)
|
||||
|
||||
```bash
|
||||
source ~/.config/claude/postgres.env && python3 -c "
|
||||
import asyncio
|
||||
import asyncpg
|
||||
async def test():
|
||||
try:
|
||||
conn = await asyncpg.connect('$POSTGRES_URL', timeout=5)
|
||||
ver = await conn.fetchval('SELECT version()')
|
||||
await conn.close()
|
||||
print(f'SUCCESS: {ver.split(\",\")[0]}')
|
||||
except Exception as e:
|
||||
print(f'FAILED: {e}')
|
||||
asyncio.run(test())
|
||||
"
|
||||
```
|
||||
|
||||
Report result:
|
||||
- SUCCESS: Connection works
|
||||
- FAILED: Show error and suggest fixes
|
||||
|
||||
---
|
||||
|
||||
## Phase 4: dbt Configuration (Optional)
|
||||
|
||||
### Step 4.1: Ask About dbt
|
||||
|
||||
Use AskUserQuestion:
|
||||
- Question: "Do you use dbt for data transformations in your projects?"
|
||||
- Header: "dbt"
|
||||
- Options:
|
||||
- "Yes, I have dbt projects"
|
||||
- "No, I don't use dbt"
|
||||
|
||||
**If user chooses "No":** Skip to Phase 5.
|
||||
|
||||
### Step 4.2: dbt Discovery
|
||||
|
||||
dbt configuration is **project-level** (not system-level). The plugin auto-detects dbt projects by looking for `dbt_project.yml`.
|
||||
|
||||
Inform user:
|
||||
```
|
||||
dbt projects are detected automatically when you work in a directory
|
||||
containing dbt_project.yml.
|
||||
|
||||
If your dbt project is in a subdirectory, you can set DBT_PROJECT_DIR
|
||||
in your project's .env file:
|
||||
|
||||
DBT_PROJECT_DIR=./transform
|
||||
DBT_PROFILES_DIR=~/.dbt
|
||||
```
|
||||
|
||||
### Step 4.3: Check dbt Installation
|
||||
|
||||
```bash
|
||||
dbt --version 2>/dev/null || echo "DBT_NOT_FOUND"
|
||||
```
|
||||
|
||||
**If not found:** Inform user that dbt CLI tools require dbt-core to be installed globally or in the project.
|
||||
|
||||
---
|
||||
|
||||
## Phase 5: Validation
|
||||
|
||||
### Step 5.1: Verify MCP Server
|
||||
|
||||
```bash
|
||||
cd /path/to/mcp-servers/data-platform && .venv/bin/python -c "from mcp_server.server import DataPlatformMCPServer; print('MCP Server OK')"
|
||||
```
|
||||
|
||||
### Step 5.2: Summary
|
||||
|
||||
```
|
||||
╔════════════════════════════════════════════════════════════╗
|
||||
║ DATA-PLATFORM SETUP COMPLETE ║
|
||||
╠════════════════════════════════════════════════════════════╣
|
||||
║ MCP Server: ✓ Ready ║
|
||||
║ pandas Tools: ✓ Available (14 tools) ║
|
||||
║ PostgreSQL Tools: [✓/✗] [Status based on config] ║
|
||||
║ PostGIS Tools: [✓/✗] [Status based on PostGIS] ║
|
||||
║ dbt Tools: [✓/✗] [Status based on discovery] ║
|
||||
╚════════════════════════════════════════════════════════════╝
|
||||
```
|
||||
|
||||
### Step 5.3: Session Restart Notice
|
||||
|
||||
---
|
||||
|
||||
**⚠️ Session Restart Required**
|
||||
|
||||
Restart your Claude Code session for MCP tools to become available.
|
||||
|
||||
**After restart, you can:**
|
||||
- Run `/ingest` to load data from files or database
|
||||
- Run `/profile` to analyze DataFrame statistics
|
||||
- Run `/schema` to explore database/DataFrame schema
|
||||
- Run `/run` to execute dbt models (if configured)
|
||||
- Run `/lineage` to view dbt model dependencies
|
||||
|
||||
---
|
||||
|
||||
## Memory Limits
|
||||
|
||||
The data-platform plugin has a default row limit of 100,000 rows per DataFrame. For larger datasets:
|
||||
- Use chunked processing (`chunk_size` parameter)
|
||||
- Filter data before loading
|
||||
- Store to Parquet for efficient re-loading
|
||||
|
||||
You can override the limit by setting in your project `.env`:
|
||||
```
|
||||
DATA_PLATFORM_MAX_ROWS=500000
|
||||
```
|
||||
60
plugins/data-platform/commands/lineage.md
Normal file
60
plugins/data-platform/commands/lineage.md
Normal file
@@ -0,0 +1,60 @@
|
||||
# /lineage - Data Lineage Visualization
|
||||
|
||||
Show data lineage for dbt models or database tables.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/lineage <model_name> [--depth N]
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Get lineage data**:
|
||||
- Use `dbt_lineage` for dbt models
|
||||
- For database tables, trace through dbt manifest
|
||||
|
||||
2. **Build lineage graph**:
|
||||
- Identify all upstream sources
|
||||
- Identify all downstream consumers
|
||||
- Note materialization at each node
|
||||
|
||||
3. **Visualize**:
|
||||
- ASCII art dependency tree
|
||||
- List format with indentation
|
||||
- Show depth levels
|
||||
|
||||
4. **Report**:
|
||||
- Full dependency chain
|
||||
- Critical path identification
|
||||
- Refresh implications
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/lineage dim_customers
|
||||
/lineage fct_orders --depth 3
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
```
|
||||
Sources:
|
||||
└── raw_customers (source)
|
||||
└── raw_orders (source)
|
||||
|
||||
dim_customers (table)
|
||||
├── upstream:
|
||||
│ └── stg_customers (view)
|
||||
│ └── raw_customers (source)
|
||||
└── downstream:
|
||||
└── fct_orders (incremental)
|
||||
└── rpt_customer_lifetime (table)
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `dbt_lineage` - Get model dependencies
|
||||
- `dbt_ls` - List dbt resources
|
||||
- `dbt_docs_generate` - Generate full manifest
|
||||
44
plugins/data-platform/commands/profile.md
Normal file
44
plugins/data-platform/commands/profile.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# /profile - Data Profiling
|
||||
|
||||
Generate statistical profile and quality report for a DataFrame.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/profile <data_ref>
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Get data reference**:
|
||||
- If no data_ref provided, use `list_data` to show available options
|
||||
- Validate the data_ref exists
|
||||
|
||||
2. **Generate profile**:
|
||||
- Use `describe` for statistical summary
|
||||
- Analyze null counts, unique values, data types
|
||||
|
||||
3. **Quality assessment**:
|
||||
- Identify columns with high null percentage
|
||||
- Flag potential data quality issues
|
||||
- Suggest cleaning operations if needed
|
||||
|
||||
4. **Report**:
|
||||
- Summary statistics per column
|
||||
- Data type distribution
|
||||
- Memory usage
|
||||
- Quality score
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/profile sales_data
|
||||
/profile df_a1b2c3d4
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `describe` - Get statistical summary
|
||||
- `head` - Preview first rows
|
||||
- `list_data` - List available DataFrames
|
||||
55
plugins/data-platform/commands/run.md
Normal file
55
plugins/data-platform/commands/run.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# /run - Execute dbt Models
|
||||
|
||||
Run dbt models with automatic pre-validation.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/run [model_selection] [--full-refresh]
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Pre-validation** (MANDATORY):
|
||||
- Use `dbt_parse` to validate project
|
||||
- Check for deprecated syntax (dbt 1.9+)
|
||||
- If validation fails, show errors and STOP
|
||||
|
||||
2. **Execute models**:
|
||||
- Use `dbt_run` with provided selection
|
||||
- Monitor progress and capture output
|
||||
|
||||
3. **Report results**:
|
||||
- Success/failure status per model
|
||||
- Execution time
|
||||
- Row counts where available
|
||||
- Any warnings or errors
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/run # Run all models
|
||||
/run dim_customers # Run specific model
|
||||
/run +fct_orders # Run model and its upstream
|
||||
/run tag:daily # Run models with tag
|
||||
/run --full-refresh # Rebuild incremental models
|
||||
```
|
||||
|
||||
## Selection Syntax
|
||||
|
||||
| Pattern | Meaning |
|
||||
|---------|---------|
|
||||
| `model_name` | Run single model |
|
||||
| `+model_name` | Run model and upstream |
|
||||
| `model_name+` | Run model and downstream |
|
||||
| `+model_name+` | Run model with all deps |
|
||||
| `tag:name` | Run by tag |
|
||||
| `path:models/staging` | Run by path |
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `dbt_parse` - Pre-validation (ALWAYS RUN FIRST)
|
||||
- `dbt_run` - Execute models
|
||||
- `dbt_build` - Run + test
|
||||
- `dbt_test` - Run tests only
|
||||
48
plugins/data-platform/commands/schema.md
Normal file
48
plugins/data-platform/commands/schema.md
Normal file
@@ -0,0 +1,48 @@
|
||||
# /schema - Schema Exploration
|
||||
|
||||
Display schema information for database tables or DataFrames.
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
/schema [table_name | data_ref]
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Determine target**:
|
||||
- If argument is a loaded data_ref, show DataFrame schema
|
||||
- If argument is a table name, query database schema
|
||||
- If no argument, list all available tables and DataFrames
|
||||
|
||||
2. **For DataFrames**:
|
||||
- Use `describe` to get column info
|
||||
- Show dtypes, null counts, sample values
|
||||
|
||||
3. **For database tables**:
|
||||
- Use `pg_columns` for column details
|
||||
- Use `st_tables` to check for PostGIS columns
|
||||
- Show constraints and indexes if available
|
||||
|
||||
4. **Report**:
|
||||
- Column name, type, nullable, default
|
||||
- For PostGIS: geometry type, SRID
|
||||
- For DataFrames: pandas dtype, null percentage
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
/schema # List all tables and DataFrames
|
||||
/schema customers # Show table schema
|
||||
/schema sales_data # Show DataFrame schema
|
||||
```
|
||||
|
||||
## Available Tools
|
||||
|
||||
Use these MCP tools:
|
||||
- `pg_tables` - List database tables
|
||||
- `pg_columns` - Get column info
|
||||
- `pg_schemas` - List schemas
|
||||
- `st_tables` - List PostGIS tables
|
||||
- `describe` - Get DataFrame info
|
||||
- `list_data` - List DataFrames
|
||||
10
plugins/data-platform/hooks/hooks.json
Normal file
10
plugins/data-platform/hooks/hooks.json
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"hooks": {
|
||||
"SessionStart": [
|
||||
{
|
||||
"type": "command",
|
||||
"command": "${CLAUDE_PLUGIN_ROOT}/hooks/startup-check.sh"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
54
plugins/data-platform/hooks/startup-check.sh
Executable file
54
plugins/data-platform/hooks/startup-check.sh
Executable file
@@ -0,0 +1,54 @@
|
||||
#!/bin/bash
|
||||
# data-platform startup check hook
|
||||
# Checks for common issues at session start
|
||||
# All output MUST have [data-platform] prefix
|
||||
|
||||
PREFIX="[data-platform]"
|
||||
|
||||
# Check if MCP venv exists
|
||||
PLUGIN_ROOT="${CLAUDE_PLUGIN_ROOT:-$(dirname "$(dirname "$(realpath "$0")")")}"
|
||||
VENV_PATH="$PLUGIN_ROOT/mcp-servers/data-platform/.venv/bin/python"
|
||||
|
||||
if [[ ! -f "$VENV_PATH" ]]; then
|
||||
echo "$PREFIX MCP venv missing - run /initial-setup or setup.sh"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Check PostgreSQL configuration (optional - just warn if configured but failing)
|
||||
POSTGRES_CONFIG="$HOME/.config/claude/postgres.env"
|
||||
if [[ -f "$POSTGRES_CONFIG" ]]; then
|
||||
source "$POSTGRES_CONFIG"
|
||||
if [[ -n "${POSTGRES_URL:-}" ]]; then
|
||||
# Quick connection test (5 second timeout)
|
||||
RESULT=$("$VENV_PATH" -c "
|
||||
import asyncio
|
||||
import sys
|
||||
async def test():
|
||||
try:
|
||||
import asyncpg
|
||||
conn = await asyncpg.connect('$POSTGRES_URL', timeout=5)
|
||||
await conn.close()
|
||||
return 'OK'
|
||||
except Exception as e:
|
||||
return f'FAIL: {e}'
|
||||
print(asyncio.run(test()))
|
||||
" 2>/dev/null || echo "FAIL: asyncpg not installed")
|
||||
|
||||
if [[ "$RESULT" == "OK" ]]; then
|
||||
# PostgreSQL OK - say nothing
|
||||
:
|
||||
elif [[ "$RESULT" == *"FAIL"* ]]; then
|
||||
echo "$PREFIX PostgreSQL connection failed - check POSTGRES_URL"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
# Check dbt project (if in a project with dbt_project.yml)
|
||||
if [[ -f "dbt_project.yml" ]] || [[ -f "transform/dbt_project.yml" ]]; then
|
||||
if ! command -v dbt &> /dev/null; then
|
||||
echo "$PREFIX dbt CLI not found - dbt tools unavailable"
|
||||
fi
|
||||
fi
|
||||
|
||||
# All checks passed - say nothing
|
||||
exit 0
|
||||
1
plugins/data-platform/mcp-servers/data-platform
Symbolic link
1
plugins/data-platform/mcp-servers/data-platform
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../mcp-servers/data-platform
|
||||
@@ -4,7 +4,7 @@ description: Run diagnostics and create structured issue in marketplace reposito
|
||||
|
||||
# Debug Report
|
||||
|
||||
Run diagnostic checks on projman MCP tools and create a structured issue in the marketplace repository for investigation.
|
||||
Create structured issues in the marketplace repository - either from automated diagnostic tests OR from user-reported problems.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
@@ -20,6 +20,101 @@ If not configured, ask the user for the marketplace repository path.
|
||||
|
||||
You MUST follow these steps in order. Do NOT skip any step.
|
||||
|
||||
### Step 0: Select Report Mode
|
||||
|
||||
Use AskUserQuestion to determine what the user wants to report:
|
||||
|
||||
```
|
||||
What would you like to report?
|
||||
|
||||
[ ] Run automated diagnostics - Test MCP tools and report failures
|
||||
[ ] Report an issue I experienced - Describe a problem with any plugin command
|
||||
```
|
||||
|
||||
Store the selection as `REPORT_MODE`:
|
||||
- "automated" → Continue to Step 1
|
||||
- "user-reported" → Skip to Step 0.1
|
||||
|
||||
---
|
||||
|
||||
### Step 0.1: Gather User Feedback (User-Reported Mode Only)
|
||||
|
||||
If `REPORT_MODE` is "user-reported", gather structured feedback.
|
||||
|
||||
**Question 1: What were you trying to do?**
|
||||
|
||||
Use AskUserQuestion:
|
||||
```
|
||||
Which plugin/command were you using?
|
||||
|
||||
[ ] projman (sprint planning, issues, labels)
|
||||
[ ] git-flow (commits, branches)
|
||||
[ ] pr-review (pull request review)
|
||||
[ ] cmdb-assistant (NetBox integration)
|
||||
[ ] doc-guardian (documentation)
|
||||
[ ] code-sentinel (security, refactoring)
|
||||
[ ] Other - I'll describe it
|
||||
```
|
||||
|
||||
Store as `AFFECTED_PLUGIN`.
|
||||
|
||||
Then ask for the specific command (free text):
|
||||
```
|
||||
What command or tool were you using? (e.g., /sprint-plan, virt_update_vm)
|
||||
```
|
||||
|
||||
Store as `AFFECTED_COMMAND`.
|
||||
|
||||
**Question 2: What was your goal?**
|
||||
|
||||
```
|
||||
Briefly describe what you were trying to accomplish:
|
||||
```
|
||||
|
||||
Store as `USER_GOAL`.
|
||||
|
||||
**Question 3: What went wrong?**
|
||||
|
||||
Use AskUserQuestion:
|
||||
```
|
||||
What type of problem did you encounter?
|
||||
|
||||
[ ] Error message - Command failed with an error
|
||||
[ ] Missing feature - Tool doesn't support what I need
|
||||
[ ] Unexpected behavior - It worked but did the wrong thing
|
||||
[ ] Documentation issue - Instructions were unclear or wrong
|
||||
[ ] Other - I'll describe it
|
||||
```
|
||||
|
||||
Store as `PROBLEM_TYPE`.
|
||||
|
||||
Then ask for details (free text):
|
||||
```
|
||||
Describe what happened. Include any error messages if applicable:
|
||||
```
|
||||
|
||||
Store as `PROBLEM_DESCRIPTION`.
|
||||
|
||||
**Question 4: Expected vs Actual**
|
||||
|
||||
```
|
||||
What did you expect to happen?
|
||||
```
|
||||
|
||||
Store as `EXPECTED_BEHAVIOR`.
|
||||
|
||||
**Question 5: Workaround (optional)**
|
||||
|
||||
```
|
||||
Did you find a workaround? If so, describe it (or skip):
|
||||
```
|
||||
|
||||
Store as `WORKAROUND` (may be empty).
|
||||
|
||||
After gathering feedback, continue to Step 1 for context gathering, then skip to Step 5.1.
|
||||
|
||||
---
|
||||
|
||||
### Step 1: Gather Project Context
|
||||
|
||||
Run these Bash commands to capture project information:
|
||||
@@ -91,7 +186,9 @@ grep PROJMAN_MARKETPLACE_REPO .env
|
||||
|
||||
Store as `MARKETPLACE_REPO`. If not found, ask the user.
|
||||
|
||||
### Step 3: Run Diagnostic Suite
|
||||
### Step 3: Run Diagnostic Suite (Automated Mode Only)
|
||||
|
||||
**Skip this step if `REPORT_MODE` is "user-reported"** → Go to Step 5.1
|
||||
|
||||
Run each MCP tool with explicit `repo` parameter. Record success/failure and full response.
|
||||
|
||||
@@ -131,7 +228,9 @@ For each test, record:
|
||||
- Status: PASS or FAIL
|
||||
- Response or error message
|
||||
|
||||
### Step 4: Analyze Results
|
||||
### Step 4: Analyze Results (Automated Mode Only)
|
||||
|
||||
**Skip this step if `REPORT_MODE` is "user-reported"** → Go to Step 5.1
|
||||
|
||||
Count failures and categorize errors:
|
||||
|
||||
@@ -145,7 +244,9 @@ Count failures and categorize errors:
|
||||
|
||||
For each failure, write a hypothesis about the likely cause.
|
||||
|
||||
### Step 5: Generate Smart Labels
|
||||
### Step 5: Generate Smart Labels (Automated Mode Only)
|
||||
|
||||
**Skip this step if `REPORT_MODE` is "user-reported"** → Go to Step 5.1
|
||||
|
||||
Generate appropriate labels based on the diagnostic results.
|
||||
|
||||
@@ -180,7 +281,53 @@ The final label set should include:
|
||||
- **Always**: `Type: Bug`, `Source: Diagnostic`, `Agent: Claude`
|
||||
- **If detected**: `Component: *`, `Complexity: *`, `Risk: *`, `Priority: *`
|
||||
|
||||
### Step 6: Generate Issue Content
|
||||
After generating labels, continue to Step 6.
|
||||
|
||||
---
|
||||
|
||||
### Step 5.1: Generate Labels (User-Reported Mode Only)
|
||||
|
||||
**Only execute this step if `REPORT_MODE` is "user-reported"**
|
||||
|
||||
**1. Map problem type to labels:**
|
||||
|
||||
| PROBLEM_TYPE | Labels |
|
||||
|--------------|--------|
|
||||
| Error message | `Type: Bug` |
|
||||
| Missing feature | `Type: Enhancement` |
|
||||
| Unexpected behavior | `Type: Bug` |
|
||||
| Documentation issue | `Type: Documentation` |
|
||||
| Other | `Type: Bug` (default) |
|
||||
|
||||
**2. Map plugin to component:**
|
||||
|
||||
| AFFECTED_PLUGIN | Component Label |
|
||||
|-----------------|-----------------|
|
||||
| projman | `Component: Commands` |
|
||||
| git-flow | `Component: Commands` |
|
||||
| pr-review | `Component: Commands` |
|
||||
| cmdb-assistant | `Component: API` |
|
||||
| doc-guardian | `Component: Commands` |
|
||||
| code-sentinel | `Component: Commands` |
|
||||
| Other | *(no component label)* |
|
||||
|
||||
**3. Build final labels:**
|
||||
|
||||
```
|
||||
BASE_LABELS = ["Source: User-Reported", "Agent: Claude"]
|
||||
TYPE_LABEL = [mapped from PROBLEM_TYPE]
|
||||
COMPONENT_LABEL = [mapped from AFFECTED_PLUGIN, if any]
|
||||
|
||||
FINAL_LABELS = BASE_LABELS + TYPE_LABEL + COMPONENT_LABEL
|
||||
```
|
||||
|
||||
After generating labels, continue to Step 6.1.
|
||||
|
||||
---
|
||||
|
||||
### Step 6: Generate Issue Content (Automated Mode Only)
|
||||
|
||||
**Skip this step if `REPORT_MODE` is "user-reported"** → Go to Step 6.1
|
||||
|
||||
Use this exact template:
|
||||
|
||||
@@ -254,9 +401,86 @@ Use this exact template:
|
||||
|
||||
---
|
||||
|
||||
*Generated by /debug-report - Labels: Type: Bug, Source: Diagnostic, Agent: Claude*
|
||||
*Generated by /debug-report (automated) - Labels: Type: Bug, Source: Diagnostic, Agent: Claude*
|
||||
```
|
||||
|
||||
After generating content, continue to Step 7.
|
||||
|
||||
---
|
||||
|
||||
### Step 6.1: Generate Issue Content (User-Reported Mode Only)
|
||||
|
||||
**Only execute this step if `REPORT_MODE` is "user-reported"**
|
||||
|
||||
Use this template for user-reported issues:
|
||||
|
||||
```markdown
|
||||
## User-Reported Issue
|
||||
|
||||
**Reported**: [ISO timestamp]
|
||||
**Reporter**: Claude Code via /debug-report (user feedback)
|
||||
|
||||
## Context
|
||||
|
||||
| Field | Value |
|
||||
|-------|-------|
|
||||
| Plugin | `[AFFECTED_PLUGIN]` |
|
||||
| Command/Tool | `[AFFECTED_COMMAND]` |
|
||||
| Repository | `[PROJECT_REPO]` |
|
||||
| Working Directory | `[WORKING_DIR]` |
|
||||
| Branch | `[CURRENT_BRANCH]` |
|
||||
|
||||
## Problem Description
|
||||
|
||||
### Goal
|
||||
[USER_GOAL]
|
||||
|
||||
### What Happened
|
||||
**Problem Type**: [PROBLEM_TYPE]
|
||||
|
||||
[PROBLEM_DESCRIPTION]
|
||||
|
||||
### Expected Behavior
|
||||
[EXPECTED_BEHAVIOR]
|
||||
|
||||
## Workaround
|
||||
[WORKAROUND if provided, otherwise "None identified"]
|
||||
|
||||
## Investigation Hints
|
||||
|
||||
Based on the affected plugin/command, relevant files to check:
|
||||
|
||||
[Generate based on AFFECTED_PLUGIN:]
|
||||
|
||||
**projman:**
|
||||
- `plugins/projman/commands/[AFFECTED_COMMAND].md`
|
||||
- `mcp-servers/gitea/mcp_server/tools/*.py`
|
||||
|
||||
**git-flow:**
|
||||
- `plugins/git-flow/commands/[AFFECTED_COMMAND].md`
|
||||
|
||||
**pr-review:**
|
||||
- `plugins/pr-review/commands/[AFFECTED_COMMAND].md`
|
||||
- `mcp-servers/gitea/mcp_server/tools/pull_requests.py`
|
||||
|
||||
**cmdb-assistant:**
|
||||
- `plugins/cmdb-assistant/commands/[AFFECTED_COMMAND].md`
|
||||
- `mcp-servers/netbox/mcp_server/tools/*.py`
|
||||
- `mcp-servers/netbox/mcp_server/server.py` (tool schemas)
|
||||
|
||||
**doc-guardian / code-sentinel:**
|
||||
- `plugins/[plugin]/commands/[AFFECTED_COMMAND].md`
|
||||
- `plugins/[plugin]/hooks/*.md`
|
||||
|
||||
---
|
||||
|
||||
*Generated by /debug-report (user feedback) - Labels: [FINAL_LABELS]*
|
||||
```
|
||||
|
||||
After generating content, continue to Step 7.
|
||||
|
||||
---
|
||||
|
||||
### Step 7: Create Issue in Marketplace
|
||||
|
||||
**IMPORTANT:** Always use curl to create issues in the marketplace repo. This avoids branch protection restrictions and MCP context issues that can block issue creation when working on protected branches.
|
||||
@@ -274,46 +498,57 @@ fi
|
||||
|
||||
**2. Fetch label IDs from marketplace repo:**
|
||||
|
||||
The diagnostic labels to apply are:
|
||||
Labels depend on `REPORT_MODE`:
|
||||
|
||||
**Automated mode:**
|
||||
- `Source/Diagnostic` (always)
|
||||
- `Type/Bug` (always)
|
||||
|
||||
**User-reported mode:**
|
||||
- `Source/User-Reported` (always)
|
||||
- Type label from Step 5.1 (Bug, Enhancement, or Documentation)
|
||||
- Component label from Step 5.1 (if applicable)
|
||||
|
||||
```bash
|
||||
# Fetch all labels and extract IDs for our target labels
|
||||
# Fetch all labels from marketplace repo
|
||||
LABELS_JSON=$(curl -s "${GITEA_API_URL}/repos/${MARKETPLACE_REPO}/labels" \
|
||||
-H "Authorization: token ${GITEA_API_TOKEN}")
|
||||
|
||||
# Extract label IDs (handles both org and repo labels)
|
||||
SOURCE_DIAG_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "Source/Diagnostic") | .id')
|
||||
TYPE_BUG_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "Type/Bug") | .id')
|
||||
# Extract label IDs based on FINAL_LABELS from Step 5 or 5.1
|
||||
# Build LABEL_IDS array with IDs of labels that exist in the repo
|
||||
# Example for automated mode:
|
||||
SOURCE_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "Source/Diagnostic") | .id')
|
||||
TYPE_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "Type/Bug") | .id')
|
||||
|
||||
# Build label array (only include IDs that were found)
|
||||
LABEL_IDS="[]"
|
||||
if [[ -n "$SOURCE_DIAG_ID" && -n "$TYPE_BUG_ID" ]]; then
|
||||
LABEL_IDS="[$SOURCE_DIAG_ID, $TYPE_BUG_ID]"
|
||||
elif [[ -n "$SOURCE_DIAG_ID" ]]; then
|
||||
LABEL_IDS="[$SOURCE_DIAG_ID]"
|
||||
elif [[ -n "$TYPE_BUG_ID" ]]; then
|
||||
LABEL_IDS="[$TYPE_BUG_ID]"
|
||||
fi
|
||||
# Example for user-reported mode (adjust based on FINAL_LABELS):
|
||||
# SOURCE_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "Source/User-Reported") | .id')
|
||||
# TYPE_ID=$(echo "$LABELS_JSON" | jq -r '.[] | select(.name == "[TYPE_LABEL]") | .id')
|
||||
|
||||
# Build label array from found IDs
|
||||
LABEL_IDS="[$(echo "$SOURCE_ID,$TYPE_ID" | sed 's/,,*/,/g; s/^,//; s/,$//')]"
|
||||
echo "Label IDs to apply: $LABEL_IDS"
|
||||
```
|
||||
|
||||
**3. Create issue with labels via curl:**
|
||||
|
||||
**Title format depends on `REPORT_MODE`:**
|
||||
- Automated: `[Diagnostic] [summary of main failure]`
|
||||
- User-reported: `[AFFECTED_PLUGIN] [brief summary of PROBLEM_DESCRIPTION]`
|
||||
|
||||
```bash
|
||||
# Create temp files with restrictive permissions
|
||||
DIAG_TITLE=$(mktemp -t diag-title.XXXXXX)
|
||||
DIAG_BODY=$(mktemp -t diag-body.XXXXXX)
|
||||
DIAG_PAYLOAD=$(mktemp -t diag-payload.XXXXXX)
|
||||
|
||||
# Save title
|
||||
echo "[Diagnostic] [summary of main failure]" > "$DIAG_TITLE"
|
||||
# Save title (format depends on REPORT_MODE)
|
||||
# Automated: "[Diagnostic] [summary of main failure]"
|
||||
# User-reported: "[AFFECTED_PLUGIN] [brief summary]"
|
||||
echo "[Title based on REPORT_MODE]" > "$DIAG_TITLE"
|
||||
|
||||
# Save body (paste Step 6 content) - heredoc delimiter prevents shell expansion
|
||||
# Save body (paste Step 6 or 6.1 content) - heredoc delimiter prevents shell expansion
|
||||
cat > "$DIAG_BODY" << 'DIAGNOSTIC_EOF'
|
||||
[Paste the full issue content from Step 6 here]
|
||||
[Paste the full issue content from Step 6 or 6.1 here]
|
||||
DIAGNOSTIC_EOF
|
||||
|
||||
# Build JSON payload with labels using jq
|
||||
@@ -360,8 +595,9 @@ To create the issue manually:
|
||||
|
||||
### Step 8: Report to User
|
||||
|
||||
Display summary:
|
||||
Display summary based on `REPORT_MODE`:
|
||||
|
||||
**Automated Mode:**
|
||||
```
|
||||
Debug Report Complete
|
||||
=====================
|
||||
@@ -383,18 +619,38 @@ Next Steps:
|
||||
3. Select issue #[N] to investigate
|
||||
```
|
||||
|
||||
**User-Reported Mode:**
|
||||
```
|
||||
Issue Report Complete
|
||||
=====================
|
||||
|
||||
Plugin: [AFFECTED_PLUGIN]
|
||||
Command: [AFFECTED_COMMAND]
|
||||
Problem: [PROBLEM_TYPE]
|
||||
|
||||
Issue Created: [issue URL]
|
||||
|
||||
Your feedback has been captured. The development team will
|
||||
investigate and may follow up with questions.
|
||||
|
||||
Next Steps:
|
||||
1. Switch to marketplace repo: cd [marketplace path]
|
||||
2. Run: /debug-review
|
||||
3. Select issue #[N] to investigate
|
||||
```
|
||||
|
||||
## DO NOT
|
||||
|
||||
- **DO NOT** attempt to fix anything - only report
|
||||
- **DO NOT** create issues if all tests pass (just report success)
|
||||
- **DO NOT** skip any diagnostic test
|
||||
- **DO NOT** create issues if all automated tests pass (unless in user-reported mode)
|
||||
- **DO NOT** skip any diagnostic test in automated mode
|
||||
- **DO NOT** call MCP tools without the `repo` parameter
|
||||
- **DO NOT** ask user questions during execution - run autonomously
|
||||
- **DO NOT** skip user questions in user-reported mode - gather complete feedback
|
||||
- **DO NOT** use MCP tools to create issues in the marketplace - always use curl (avoids branch restrictions)
|
||||
|
||||
## If All Tests Pass
|
||||
## If All Tests Pass (Automated Mode Only)
|
||||
|
||||
If all 5 tests pass, report success without creating an issue:
|
||||
If all 5 tests pass in automated mode, report success without creating an issue:
|
||||
|
||||
```
|
||||
Debug Report Complete
|
||||
@@ -407,8 +663,8 @@ Failed: 0
|
||||
|
||||
All diagnostics passed. No issues to report.
|
||||
|
||||
If you're experiencing a specific problem, please describe it
|
||||
and I can create a manual bug report.
|
||||
If you're experiencing a specific problem, run /debug-report again
|
||||
and select "Report an issue I experienced" to describe it.
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
@@ -67,6 +67,7 @@ main() {
|
||||
# Shared MCP servers at repository root (v3.0.0+)
|
||||
update_mcp_server "gitea"
|
||||
update_mcp_server "netbox"
|
||||
update_mcp_server "data-platform"
|
||||
|
||||
check_changelog
|
||||
|
||||
|
||||
172
scripts/release.sh
Executable file
172
scripts/release.sh
Executable file
@@ -0,0 +1,172 @@
|
||||
#!/bin/bash
|
||||
# release.sh - Create a new release with version consistency
|
||||
#
|
||||
# Usage: ./scripts/release.sh X.Y.Z
|
||||
#
|
||||
# This script ensures all version references are updated consistently:
|
||||
# 1. CHANGELOG.md - [Unreleased] becomes [X.Y.Z] - YYYY-MM-DD
|
||||
# 2. README.md - Title updated to vX.Y.Z
|
||||
# 3. marketplace.json - version field updated
|
||||
# 4. Git commit and tag created
|
||||
#
|
||||
# Prerequisites:
|
||||
# - Clean working directory (no uncommitted changes)
|
||||
# - [Unreleased] section in CHANGELOG.md with content
|
||||
# - On development branch
|
||||
|
||||
set -e
|
||||
|
||||
VERSION=$1
|
||||
DATE=$(date +%Y-%m-%d)
|
||||
|
||||
# Colors for output
|
||||
RED='\033[0;31m'
|
||||
GREEN='\033[0;32m'
|
||||
YELLOW='\033[1;33m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
error() { echo -e "${RED}ERROR: $1${NC}" >&2; exit 1; }
|
||||
warn() { echo -e "${YELLOW}WARNING: $1${NC}"; }
|
||||
success() { echo -e "${GREEN}$1${NC}"; }
|
||||
info() { echo -e "$1"; }
|
||||
|
||||
# Validate arguments
|
||||
if [ -z "$VERSION" ]; then
|
||||
echo "Usage: ./scripts/release.sh X.Y.Z"
|
||||
echo ""
|
||||
echo "Example: ./scripts/release.sh 3.2.0"
|
||||
echo ""
|
||||
echo "This will:"
|
||||
echo " 1. Update CHANGELOG.md [Unreleased] -> [X.Y.Z] - $(date +%Y-%m-%d)"
|
||||
echo " 2. Update README.md title to vX.Y.Z"
|
||||
echo " 3. Update marketplace.json version to X.Y.Z"
|
||||
echo " 4. Commit with message 'chore: release vX.Y.Z'"
|
||||
echo " 5. Create git tag vX.Y.Z"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Validate version format
|
||||
if ! [[ "$VERSION" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
|
||||
error "Invalid version format. Use X.Y.Z (e.g., 3.2.0)"
|
||||
fi
|
||||
|
||||
# Check we're in the right directory
|
||||
if [ ! -f "CHANGELOG.md" ] || [ ! -f "README.md" ] || [ ! -f ".claude-plugin/marketplace.json" ]; then
|
||||
error "Must run from repository root (CHANGELOG.md, README.md, .claude-plugin/marketplace.json must exist)"
|
||||
fi
|
||||
|
||||
# Check for clean working directory
|
||||
if [ -n "$(git status --porcelain)" ]; then
|
||||
warn "Working directory has uncommitted changes"
|
||||
echo ""
|
||||
git status --short
|
||||
echo ""
|
||||
read -p "Continue anyway? [y/N] " -n 1 -r
|
||||
echo
|
||||
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Check current branch
|
||||
BRANCH=$(git branch --show-current)
|
||||
if [ "$BRANCH" != "development" ] && [ "$BRANCH" != "main" ]; then
|
||||
warn "Not on development or main branch (current: $BRANCH)"
|
||||
read -p "Continue anyway? [y/N] " -n 1 -r
|
||||
echo
|
||||
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Check [Unreleased] section has content
|
||||
if ! grep -q "## \[Unreleased\]" CHANGELOG.md; then
|
||||
error "CHANGELOG.md missing [Unreleased] section"
|
||||
fi
|
||||
|
||||
# Check if tag already exists
|
||||
if git tag -l | grep -q "^v$VERSION$"; then
|
||||
error "Tag v$VERSION already exists"
|
||||
fi
|
||||
|
||||
info ""
|
||||
info "=== Release v$VERSION ==="
|
||||
info ""
|
||||
|
||||
# Show what will change
|
||||
info "Changes to be made:"
|
||||
info " CHANGELOG.md: [Unreleased] -> [$VERSION] - $DATE"
|
||||
info " README.md: title -> v$VERSION"
|
||||
info " marketplace.json: version -> $VERSION"
|
||||
info " Git: commit + tag v$VERSION"
|
||||
info ""
|
||||
|
||||
# Preview CHANGELOG [Unreleased] content
|
||||
info "Current [Unreleased] content:"
|
||||
info "---"
|
||||
sed -n '/^## \[Unreleased\]/,/^## \[/p' CHANGELOG.md | head -30
|
||||
info "---"
|
||||
info ""
|
||||
|
||||
read -p "Proceed with release? [y/N] " -n 1 -r
|
||||
echo
|
||||
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
|
||||
info "Aborted"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
info ""
|
||||
info "Updating files..."
|
||||
|
||||
# 1. Update CHANGELOG.md
|
||||
# Replace [Unreleased] with [X.Y.Z] - DATE and add new [Unreleased] section
|
||||
sed -i "s/^## \[Unreleased\]$/## [Unreleased]\n\n*Changes staged for the next release*\n\n---\n\n## [$VERSION] - $DATE/" CHANGELOG.md
|
||||
|
||||
# Remove the placeholder text if it exists after the new [Unreleased]
|
||||
sed -i '/^\*Changes staged for the next release\*$/d' CHANGELOG.md
|
||||
|
||||
# Clean up any double blank lines
|
||||
sed -i '/^$/N;/^\n$/d' CHANGELOG.md
|
||||
|
||||
success " CHANGELOG.md updated"
|
||||
|
||||
# 2. Update README.md title
|
||||
sed -i "s/^# Leo Claude Marketplace - v[0-9]\+\.[0-9]\+\.[0-9]\+$/# Leo Claude Marketplace - v$VERSION/" README.md
|
||||
success " README.md updated"
|
||||
|
||||
# 3. Update marketplace.json version
|
||||
sed -i "s/\"version\": \"[0-9]\+\.[0-9]\+\.[0-9]\+\"/\"version\": \"$VERSION\"/" .claude-plugin/marketplace.json
|
||||
success " marketplace.json updated"
|
||||
|
||||
info ""
|
||||
info "Files updated. Review changes:"
|
||||
info ""
|
||||
git diff --stat
|
||||
info ""
|
||||
git diff CHANGELOG.md | head -40
|
||||
info ""
|
||||
|
||||
read -p "Commit and tag? [y/N] " -n 1 -r
|
||||
echo
|
||||
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
|
||||
warn "Changes made but not committed. Run 'git checkout -- .' to revert."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Commit
|
||||
git add CHANGELOG.md README.md .claude-plugin/marketplace.json
|
||||
git commit -m "chore: release v$VERSION"
|
||||
success " Committed"
|
||||
|
||||
# Tag
|
||||
git tag "v$VERSION"
|
||||
success " Tagged v$VERSION"
|
||||
|
||||
info ""
|
||||
success "=== Release v$VERSION created ==="
|
||||
info ""
|
||||
info "Next steps:"
|
||||
info " 1. Review the commit: git show HEAD"
|
||||
info " 2. Push to remote: git push && git push --tags"
|
||||
info " 3. Merge to main if on development branch"
|
||||
info ""
|
||||
@@ -116,6 +116,15 @@ verify_symlinks() {
|
||||
log_error "pr-review/gitea symlink missing"
|
||||
log_todo "Run: ln -s ../../../mcp-servers/gitea plugins/pr-review/mcp-servers/gitea"
|
||||
fi
|
||||
|
||||
# Check data-platform -> data-platform symlink
|
||||
local dataplatform_link="$REPO_ROOT/plugins/data-platform/mcp-servers/data-platform"
|
||||
if [[ -L "$dataplatform_link" ]]; then
|
||||
log_success "data-platform symlink exists"
|
||||
else
|
||||
log_error "data-platform symlink missing"
|
||||
log_todo "Run: ln -s ../../../mcp-servers/data-platform plugins/data-platform/mcp-servers/data-platform"
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Section 3: Config File Templates ---
|
||||
@@ -178,6 +187,22 @@ EOF
|
||||
chmod 600 "$config_dir/git-flow.env"
|
||||
log_success "git-flow.env template created"
|
||||
fi
|
||||
|
||||
# PostgreSQL config (for data-platform, optional)
|
||||
if [[ -f "$config_dir/postgres.env" ]]; then
|
||||
log_skip "postgres.env already exists"
|
||||
else
|
||||
cat > "$config_dir/postgres.env" << 'EOF'
|
||||
# PostgreSQL Configuration (for data-platform plugin)
|
||||
# Update with your PostgreSQL connection URL
|
||||
# This is OPTIONAL - pandas tools work without it
|
||||
|
||||
POSTGRES_URL=postgresql://user:password@localhost:5432/database
|
||||
EOF
|
||||
chmod 600 "$config_dir/postgres.env"
|
||||
log_success "postgres.env template created"
|
||||
log_todo "Edit ~/.config/claude/postgres.env with your PostgreSQL credentials (optional)"
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Section 4: Validate Configuration ---
|
||||
@@ -283,6 +308,7 @@ main() {
|
||||
# Shared MCP servers at repository root
|
||||
setup_shared_mcp "gitea"
|
||||
setup_shared_mcp "netbox"
|
||||
setup_shared_mcp "data-platform"
|
||||
|
||||
# Verify symlinks from plugins to shared MCP servers
|
||||
verify_symlinks
|
||||
|
||||
@@ -168,6 +168,12 @@ if [[ ! -d "$ROOT_DIR/mcp-servers/netbox" ]]; then
|
||||
fi
|
||||
echo "✓ Shared netbox MCP server exists"
|
||||
|
||||
if [[ ! -d "$ROOT_DIR/mcp-servers/data-platform" ]]; then
|
||||
echo "ERROR: Shared data-platform MCP server not found at mcp-servers/data-platform/"
|
||||
exit 1
|
||||
fi
|
||||
echo "✓ Shared data-platform MCP server exists"
|
||||
|
||||
# Check symlinks for plugins that use MCP servers
|
||||
check_mcp_symlink() {
|
||||
local plugin_name="$1"
|
||||
@@ -195,5 +201,8 @@ check_mcp_symlink "pr-review" "gitea"
|
||||
# Plugins with netbox MCP dependency
|
||||
check_mcp_symlink "cmdb-assistant" "netbox"
|
||||
|
||||
# Plugins with data-platform MCP dependency
|
||||
check_mcp_symlink "data-platform" "data-platform"
|
||||
|
||||
echo ""
|
||||
echo "=== All validations passed ==="
|
||||
|
||||
@@ -15,15 +15,15 @@ for f in $(find ~/.claude -name "hooks.json" 2>/dev/null); do
|
||||
fi
|
||||
done
|
||||
|
||||
# Check cache specifically
|
||||
# Note about cache (informational only - do NOT clear mid-session)
|
||||
if [ -d ~/.claude/plugins/cache/leo-claude-mktplace ]; then
|
||||
echo "❌ CACHE EXISTS: ~/.claude/plugins/cache/leo-claude-mktplace"
|
||||
echo " Run: rm -rf ~/.claude/plugins/cache/leo-claude-mktplace/"
|
||||
FAILED=1
|
||||
echo "ℹ️ Cache exists: ~/.claude/plugins/cache/leo-claude-mktplace"
|
||||
echo " (This is normal - do NOT clear mid-session or MCP tools will break)"
|
||||
echo " To apply plugin changes: restart Claude Code session"
|
||||
fi
|
||||
|
||||
# Verify installed hooks are command type
|
||||
for plugin in doc-guardian code-sentinel projman pr-review project-hygiene; do
|
||||
for plugin in doc-guardian code-sentinel projman pr-review project-hygiene data-platform; do
|
||||
HOOK_FILE=~/.claude/plugins/marketplaces/leo-claude-mktplace/plugins/$plugin/hooks/hooks.json
|
||||
if [ -f "$HOOK_FILE" ]; then
|
||||
if grep -q '"type": "command"' "$HOOK_FILE" || grep -q '"type":"command"' "$HOOK_FILE"; then
|
||||
|
||||
Reference in New Issue
Block a user