--- name: seed setup --- # /seed setup - Data Seed Setup Wizard ## Skills to Load - skills/schema-inference.md - skills/visual-header.md ## Visual Output Display header: `DATA-SEED - Setup Wizard` ## Usage ``` /seed setup ``` ## Workflow ### Phase 1: Environment Detection - Detect project type: Python (SQLAlchemy, Django ORM), Node.js (Prisma, TypeORM), or raw SQL - Check for existing schema files: `schema.prisma`, `models.py`, `*.sql` DDL files - Identify package manager and installed ORM libraries ### Phase 2: Schema Source Configuration - Ask user to confirm detected schema source or specify manually - Supported sources: - SQLAlchemy models (`models.py`, `models/` directory) - Prisma schema (`prisma/schema.prisma`) - Django models (`models.py` with Django imports) - Raw SQL DDL files (`*.sql` with CREATE TABLE statements) - JSON Schema definitions (`*.schema.json`) - Store schema source path for future commands ### Phase 3: Output Configuration - Ask preferred output format: SQL inserts, JSON fixtures, CSV files, or ORM factory objects - Ask preferred output directory (default: `seeds/` or `fixtures/`) - Ask default locale for faker data (default: `en_US`) ### Phase 4: Profile Initialization - Create default profiles if none exist: - `small` — 10 rows per table, minimal relationships - `medium` — 100 rows per table, realistic relationships - `large` — 1000 rows per table, stress-test volume - Store profiles in `seed-profiles.json` in output directory ### Phase 5: Validation - Verify schema can be parsed from detected source - Display summary with detected tables, column counts, and relationship map - Inform user of available commands ## Important Notes - Uses Bash, Read, Write, AskUserQuestion tools - Does not require database connection (schema-first approach) - Profile definitions are portable across environments