refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio - Restructure dbt models into domain subdirectories: - shared/ for cross-domain dimensions (dim_time) - staging/toronto/, intermediate/toronto/, marts/toronto/ - Update SQLAlchemy models for raw_toronto schema - Add explicit cross-schema FK relationships for FactRentals - Namespace figure factories under figures/toronto/ - Namespace notebooks under notebooks/toronto/ - Update Makefile with domain-specific targets and env loading - Update all documentation for multi-dashboard structure This enables adding new dashboard projects (e.g., /football, /energy) without structural conflicts or naming collisions. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -1,17 +1,18 @@
|
||||
# Toronto Neighbourhood Dashboard - Notebooks
|
||||
# Dashboard Documentation Notebooks
|
||||
|
||||
Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
|
||||
Documentation notebooks organized by dashboard project. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
|
||||
|
||||
## Directory Structure
|
||||
|
||||
```
|
||||
notebooks/
|
||||
├── README.md # This file
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
└── toronto/ # Toronto Neighbourhood Dashboard
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
```
|
||||
|
||||
## Notebook Template
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Radar Chart\n",
|
||||
"\n",
|
||||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ['DATABASE_URL'])\n\nquery = \"\"\"\nSELECT\n neighbourhood_name,\n parks_index,\n schools_index,\n transit_index,\n amenity_index,\n amenity_tier\nFROM public_marts.mart_neighbourhood_amenities\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\nORDER BY amenity_index DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||||
"2. Reshape for radar chart format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Select representative neighbourhoods\n",
|
||||
"top_5 = df.head(5)\n",
|
||||
"bottom_5 = df.tail(5)\n",
|
||||
"\n",
|
||||
"# Prepare radar data\n",
|
||||
"categories = ['Parks', 'Schools', 'Transit']\n",
|
||||
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||||
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
|
||||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||||
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_radar` from `portfolio_app.figures.radar`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import sys\nsys.path.insert(0, '../..')\n\nfrom portfolio_app.figures.radar import create_comparison_radar\n\n# Compare top neighbourhood vs city average (100)\ntop_hood = top_5.iloc[0]\nmetrics = ['parks_index', 'schools_index', 'transit_index']\n\nfig = create_comparison_radar(\n selected_data=top_hood.to_dict(),\n average_data={'parks_index': 100, 'schools_index': 100, 'transit_index': 100},\n metrics=metrics,\n selected_name=top_hood['neighbourhood_name'],\n average_name='City Average',\n title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n)\n\nfig.show()"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Value | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | Below city average |\n",
|
||||
"| = 100 | City average |\n",
|
||||
"| > 100 | Above city average |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -79,17 +80,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'total_amenities_per_1000', 'amenity_index', 'amenity_tier']].head(10)"
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"total_amenities_per_1000\", \"amenity_index\", \"amenity_tier\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,18 +128,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='total_amenities_per_1000',\n",
|
||||
" hover_data=['neighbourhood_name', 'amenity_index', 'parks_per_1000', 'schools_per_1000'],\n",
|
||||
" color_scale='Greens',\n",
|
||||
" title='Toronto Amenities per 1,000 Population',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"total_amenities_per_1000\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" \"parks_per_1000\",\n",
|
||||
" \"schools_per_1000\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"Greens\",\n",
|
||||
" title=\"Toronto Amenities per 1,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
@@ -0,0 +1,191 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Radar Chart\n",
|
||||
"\n",
|
||||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" parks_index,\n",
|
||||
" schools_index,\n",
|
||||
" transit_index,\n",
|
||||
" amenity_index,\n",
|
||||
" amenity_tier\n",
|
||||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||||
"ORDER BY amenity_index DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||||
"2. Reshape for radar chart format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Select representative neighbourhoods\n",
|
||||
"top_5 = df.head(5)\n",
|
||||
"bottom_5 = df.tail(5)\n",
|
||||
"\n",
|
||||
"# Prepare radar data\n",
|
||||
"categories = [\"Parks\", \"Schools\", \"Transit\"]\n",
|
||||
"index_columns = [\"parks_index\", \"schools_index\", \"transit_index\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" top_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" bottom_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_radar` from `portfolio_app.figures.toronto.radar`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.radar import create_comparison_radar\n",
|
||||
"\n",
|
||||
"# Compare top neighbourhood vs city average (100)\n",
|
||||
"top_hood = top_5.iloc[0]\n",
|
||||
"metrics = [\"parks_index\", \"schools_index\", \"transit_index\"]\n",
|
||||
"\n",
|
||||
"fig = create_comparison_radar(\n",
|
||||
" selected_data=top_hood.to_dict(),\n",
|
||||
" average_data={\"parks_index\": 100, \"schools_index\": 100, \"transit_index\": 100},\n",
|
||||
" metrics=metrics,\n",
|
||||
" selected_name=top_hood[\"neighbourhood_name\"],\n",
|
||||
" average_name=\"City Average\",\n",
|
||||
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Value | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | Below city average |\n",
|
||||
"| = 100 | City average |\n",
|
||||
"| > 100 | Above city average |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | transit_per_1000, transit_index, transit_count |\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | transit_per_1000, transit_index, transit_count |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -74,7 +75,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict('records')"
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +91,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'transit_per_1000', 'transit_index', 'transit_count']].head(10)"
|
||||
"df[[\"neighbourhood_name\", \"transit_per_1000\", \"transit_index\", \"transit_count\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -101,7 +104,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -111,17 +114,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='transit_per_1000',\n",
|
||||
" title='Top 20 Neighbourhoods by Transit Accessibility',\n",
|
||||
" color='#00BCD4',\n",
|
||||
" value_format='.2f',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"transit_per_1000\",\n",
|
||||
" title=\"Top 20 Neighbourhoods by Transit Accessibility\",\n",
|
||||
" color=\"#00BCD4\",\n",
|
||||
" value_format=\".2f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -140,7 +144,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(f\"City-wide Transit Statistics:\")\n",
|
||||
"print(\"City-wide Transit Statistics:\")\n",
|
||||
"print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n",
|
||||
"print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n",
|
||||
"print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | median_age, age_index, city_avg_age |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,13 +77,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"city_avg = df['city_avg_age'].iloc[0]\n",
|
||||
"df['age_category'] = df['median_age'].apply(\n",
|
||||
" lambda x: 'Younger' if x < city_avg else 'Older'\n",
|
||||
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
|
||||
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
|
||||
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
|
||||
")\n",
|
||||
"df['age_deviation'] = df['median_age'] - city_avg\n",
|
||||
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
|
||||
"\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -100,9 +101,13 @@
|
||||
"source": [
|
||||
"print(f\"City Average Age: {city_avg:.1f}\")\n",
|
||||
"print(\"\\nYoungest Neighbourhoods:\")\n",
|
||||
"display(df.tail(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])\n",
|
||||
"display(\n",
|
||||
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")\n",
|
||||
"print(\"\\nOldest Neighbourhoods:\")\n",
|
||||
"display(df.head(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])"
|
||||
"display(\n",
|
||||
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -113,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -123,20 +128,21 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='median_age',\n",
|
||||
" title='Youngest & Oldest Neighbourhoods (Median Age)',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"median_age\",\n",
|
||||
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top='#FF9800', # Orange for older\n",
|
||||
" color_bottom='#2196F3', # Blue for younger\n",
|
||||
" value_format='.1f',\n",
|
||||
" color_top=\"#FF9800\", # Orange for older\n",
|
||||
" color_bottom=\"#2196F3\", # Blue for younger\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -157,7 +163,7 @@
|
||||
"source": [
|
||||
"# Age by income quintile\n",
|
||||
"print(\"Median Age by Income Quintile:\")\n",
|
||||
"df.groupby('income_quintile')['median_age'].mean().round(1)"
|
||||
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | median_household_income, income_index, income_quintile, geometry |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,19 +78,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'median_household_income', 'income_index', 'income_quintile']].head(10)"
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,18 +128,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='median_household_income',\n",
|
||||
" hover_data=['neighbourhood_name', 'income_index', 'income_quintile'],\n",
|
||||
" color_scale='Viridis',\n",
|
||||
" title='Toronto Median Household Income by Neighbourhood',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"median_household_income\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n",
|
||||
" color_scale=\"Viridis\",\n",
|
||||
" title=\"Toronto Median Household Income by Neighbourhood\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -157,7 +160,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.groupby('income_quintile')['median_household_income'].agg(['count', 'mean', 'min', 'max']).round(0)"
|
||||
"df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n",
|
||||
" [\"count\", \"mean\", \"min\", \"max\"]\n",
|
||||
").round(0)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | population_density, population, land_area_sqkm |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | population_density, population, land_area_sqkm |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -74,7 +75,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict('records')"
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +91,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'population_density', 'population', 'land_area_sqkm']].head(10)"
|
||||
"df[[\"neighbourhood_name\", \"population_density\", \"population\", \"land_area_sqkm\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -101,7 +104,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -111,17 +114,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='population_density',\n",
|
||||
" title='Top 20 Most Dense Neighbourhoods',\n",
|
||||
" color='#9C27B0',\n",
|
||||
" value_format=',.0f',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"population_density\",\n",
|
||||
" title=\"Top 20 Most Dense Neighbourhoods\",\n",
|
||||
" color=\"#9C27B0\",\n",
|
||||
" value_format=\",.0f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -140,7 +144,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(f\"City-wide Statistics:\")\n",
|
||||
"print(\"City-wide Statistics:\")\n",
|
||||
"print(f\" Total Population: {df['population'].sum():,.0f}\")\n",
|
||||
"print(f\" Total Area: {df['land_area_sqkm'].sum():,.1f} sq km\")\n",
|
||||
"print(f\" Average Density: {df['population_density'].mean():,.0f} per sq km\")\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,17 +78,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,7 +103,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'affordability_index', 'rent_to_income_pct', 'avg_rent_2bed', 'is_affordable']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"affordability_index\",\n",
|
||||
" \"rent_to_income_pct\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"is_affordable\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +122,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'affordability_index'\n",
|
||||
@@ -128,18 +136,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='affordability_index',\n",
|
||||
" hover_data=['neighbourhood_name', 'rent_to_income_pct', 'avg_rent_2bed'],\n",
|
||||
" color_scale='RdYlGn_r', # Reversed: lower index (affordable) = green\n",
|
||||
" title='Toronto Housing Affordability Index',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"affordability_index\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"rent_to_income_pct\", \"avg_rent_2bed\"],\n",
|
||||
" color_scale=\"RdYlGn_r\", # Reversed: lower index (affordable) = green\n",
|
||||
" title=\"Toronto Housing Affordability Index\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"# City-wide average rent by year\n",
|
||||
"query = \"\"\"\n",
|
||||
@@ -77,23 +78,25 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create date column from year\n",
|
||||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line chart\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['year', 'date'],\n",
|
||||
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
|
||||
" var_name='bedroom_type',\n",
|
||||
" value_name='avg_rent'\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_rent_bachelor\", \"avg_rent_1bed\", \"avg_rent_2bed\", \"avg_rent_3bed\"],\n",
|
||||
" var_name=\"bedroom_type\",\n",
|
||||
" value_name=\"avg_rent\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
|
||||
" 'avg_rent_bachelor': 'Bachelor',\n",
|
||||
" 'avg_rent_1bed': '1 Bedroom',\n",
|
||||
" 'avg_rent_2bed': '2 Bedroom',\n",
|
||||
" 'avg_rent_3bed': '3 Bedroom'\n",
|
||||
"})"
|
||||
"df_melted[\"bedroom_type\"] = df_melted[\"bedroom_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_rent_bachelor\": \"Bachelor\",\n",
|
||||
" \"avg_rent_1bed\": \"1 Bedroom\",\n",
|
||||
" \"avg_rent_2bed\": \"2 Bedroom\",\n",
|
||||
" \"avg_rent_3bed\": \"3 Bedroom\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -109,7 +112,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"year\",\n",
|
||||
" \"avg_rent_bachelor\",\n",
|
||||
" \"avg_rent_1bed\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"avg_rent_3bed\",\n",
|
||||
" \"avg_yoy_change\",\n",
|
||||
" ]\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -120,7 +132,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
|
||||
"Uses `create_price_time_series` from `portfolio_app.figures.toronto.time_series`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `date_column`: 'date'\n",
|
||||
@@ -135,18 +147,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='avg_rent',\n",
|
||||
" group_column='bedroom_type',\n",
|
||||
" title='Toronto Average Rent Trend (5 Years)',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"avg_rent\",\n",
|
||||
" group_column=\"bedroom_type\",\n",
|
||||
" title=\"Toronto Average Rent Trend (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -167,7 +180,7 @@
|
||||
"source": [
|
||||
"# Show year-over-year changes\n",
|
||||
"print(\"Year-over-Year Rent Change (%)\")\n",
|
||||
"df[['year', 'avg_yoy_change']].dropna()"
|
||||
"df[[\"year\", \"avg_yoy_change\"]].dropna()"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,18 +78,17 @@
|
||||
"source": [
|
||||
"# Prepare for stacked bar\n",
|
||||
"df_stacked = df.melt(\n",
|
||||
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
|
||||
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
|
||||
" var_name='tenure_type',\n",
|
||||
" value_name='percentage'\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"income_quintile\"],\n",
|
||||
" value_vars=[\"pct_owner_occupied\", \"pct_renter_occupied\"],\n",
|
||||
" var_name=\"tenure_type\",\n",
|
||||
" value_name=\"percentage\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
|
||||
" 'pct_owner_occupied': 'Owner',\n",
|
||||
" 'pct_renter_occupied': 'Renter'\n",
|
||||
"})\n",
|
||||
"df_stacked[\"tenure_type\"] = df_stacked[\"tenure_type\"].map(\n",
|
||||
" {\"pct_owner_occupied\": \"Owner\", \"pct_renter_occupied\": \"Renter\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_stacked.to_dict('records')"
|
||||
"data = df_stacked.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Highest Renter Neighbourhoods:\")\n",
|
||||
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"pct_renter_occupied\",\n",
|
||||
" \"pct_owner_occupied\",\n",
|
||||
" \"income_quintile\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +123,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'neighbourhood_name'\n",
|
||||
@@ -132,21 +139,22 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"# Show top 20 by renter percentage\n",
|
||||
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
|
||||
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
|
||||
"top_20_names = df.head(20)[\"neighbourhood_name\"].tolist()\n",
|
||||
"data_filtered = [d for d in data if d[\"neighbourhood_name\"] in top_20_names]\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data_filtered,\n",
|
||||
" x_column='neighbourhood_name',\n",
|
||||
" value_column='percentage',\n",
|
||||
" category_column='tenure_type',\n",
|
||||
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
|
||||
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"percentage\",\n",
|
||||
" category_column=\"tenure_type\",\n",
|
||||
" title=\"Housing Tenure Mix - Top 20 Renter Neighbourhoods\",\n",
|
||||
" color_map={\"Owner\": \"#4CAF50\", \"Renter\": \"#2196F3\"},\n",
|
||||
" show_percentages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -172,7 +180,9 @@
|
||||
"\n",
|
||||
"# By income quintile\n",
|
||||
"print(\"\\nTenure by Income Quintile:\")\n",
|
||||
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
|
||||
"df.groupby(\"income_quintile\")[\n",
|
||||
" [\"pct_owner_occupied\", \"pct_renter_occupied\"]\n",
|
||||
"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood \u00d7 year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,10 +78,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Scale income to thousands for better axis readability\n",
|
||||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -96,7 +97,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'median_household_income', 'safety_score', 'crime_rate_per_100k']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"median_household_income\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -107,7 +115,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_scatter_figure` from `portfolio_app.figures.scatter`.\n",
|
||||
"Uses `create_scatter_figure` from `portfolio_app.figures.toronto.scatter`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'income_thousands' (median household income in $K)\n",
|
||||
@@ -124,19 +132,20 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.scatter import create_scatter_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.scatter import create_scatter_figure\n",
|
||||
"\n",
|
||||
"fig = create_scatter_figure(\n",
|
||||
" data=data,\n",
|
||||
" x_column='income_thousands',\n",
|
||||
" y_column='safety_score',\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" size_column='population',\n",
|
||||
" title='Income vs Safety by Neighbourhood',\n",
|
||||
" x_title='Median Household Income ($K)',\n",
|
||||
" y_title='Safety Score (0-100)',\n",
|
||||
" x_column=\"income_thousands\",\n",
|
||||
" y_column=\"safety_score\",\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" size_column=\"population\",\n",
|
||||
" title=\"Income vs Safety by Neighbourhood\",\n",
|
||||
" x_title=\"Median Household Income ($K)\",\n",
|
||||
" y_title=\"Safety Score (0-100)\",\n",
|
||||
" trendline=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -166,7 +175,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Calculate correlation coefficient\n",
|
||||
"correlation = df['median_household_income'].corr(df['safety_score'])\n",
|
||||
"correlation = df[\"median_household_income\"].corr(df[\"safety_score\"])\n",
|
||||
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
|
||||
]
|
||||
}
|
||||
@@ -29,7 +29,38 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ['DATABASE_URL'])\n\nquery = \"\"\"\nSELECT\n neighbourhood_id,\n neighbourhood_name,\n geometry,\n year,\n livability_score,\n safety_score,\n affordability_score,\n amenity_score,\n population,\n median_household_income\nFROM public_marts.mart_neighbourhood_overview\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\nORDER BY livability_score DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" livability_score,\n",
|
||||
" safety_score,\n",
|
||||
" affordability_score,\n",
|
||||
" amenity_score,\n",
|
||||
" population,\n",
|
||||
" median_household_income\n",
|
||||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||||
"ORDER BY livability_score DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -49,21 +80,20 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Transform geometry to GeoJSON\n",
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"# Convert WKB geometry to GeoDataFrame\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Create GeoJSON FeatureCollection\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -79,7 +109,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'livability_score', 'safety_score', 'affordability_score', 'amenity_score']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"livability_score\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +128,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
|
||||
@@ -107,18 +145,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='livability_score',\n",
|
||||
" hover_data=['neighbourhood_name', 'safety_score', 'affordability_score', 'amenity_score'],\n",
|
||||
" color_scale='RdYlGn',\n",
|
||||
" title='Toronto Neighbourhood Livability Score',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"livability_score\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"RdYlGn\",\n",
|
||||
" title=\"Toronto Neighbourhood Livability Score\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood \u00d7 year | neighbourhood_name, livability_score |\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,7 +77,7 @@
|
||||
"source": [
|
||||
"# The figure factory handles top/bottom selection internally\n",
|
||||
"# Just prepare as list of dicts\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -106,7 +107,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `data`: List of dicts with all neighbourhoods\n",
|
||||
@@ -123,20 +124,21 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='livability_score',\n",
|
||||
" title='Top & Bottom 10 Neighbourhoods by Livability',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"livability_score\",\n",
|
||||
" title=\"Top & Bottom 10 Neighbourhoods by Livability\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top='#4CAF50', # Green for top performers\n",
|
||||
" color_bottom='#F44336', # Red for bottom performers\n",
|
||||
" value_format='.1f',\n",
|
||||
" color_top=\"#4CAF50\", # Green for top performers\n",
|
||||
" color_bottom=\"#F44336\", # Red for bottom performers\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -79,17 +80,25 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['neighbourhood_name', 'total_incidents'],\n",
|
||||
" value_vars=['assault_count', 'auto_theft_count', 'break_enter_count', \n",
|
||||
" 'robbery_count', 'theft_over_count', 'homicide_count'],\n",
|
||||
" var_name='crime_type',\n",
|
||||
" value_name='count'\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n",
|
||||
" value_vars=[\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"robbery_count\",\n",
|
||||
" \"theft_over_count\",\n",
|
||||
" \"homicide_count\",\n",
|
||||
" ],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"count\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted['crime_type'] = df_melted['crime_type'].str.replace('_count', '').str.replace('_', ' ').str.title()\n",
|
||||
"df_melted[\"crime_type\"] = (\n",
|
||||
" df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')"
|
||||
"data = df_melted.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +114,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'assault_count', 'auto_theft_count', 'break_enter_count', 'total_incidents']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +133,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,23 +143,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data,\n",
|
||||
" x_column='neighbourhood_name',\n",
|
||||
" value_column='count',\n",
|
||||
" category_column='crime_type',\n",
|
||||
" title='Crime Type Breakdown - Top 15 Neighbourhoods',\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"count\",\n",
|
||||
" category_column=\"crime_type\",\n",
|
||||
" title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n",
|
||||
" color_map={\n",
|
||||
" 'Assault': '#d62728',\n",
|
||||
" 'Auto Theft': '#ff7f0e',\n",
|
||||
" 'Break Enter': '#9467bd',\n",
|
||||
" 'Robbery': '#8c564b',\n",
|
||||
" 'Theft Over': '#e377c2',\n",
|
||||
" 'Homicide': '#1f77b4'\n",
|
||||
" \"Assault\": \"#d62728\",\n",
|
||||
" \"Auto Theft\": \"#ff7f0e\",\n",
|
||||
" \"Break Enter\": \"#9467bd\",\n",
|
||||
" \"Robbery\": \"#8c564b\",\n",
|
||||
" \"Theft Over\": \"#e377c2\",\n",
|
||||
" \"Homicide\": \"#1f77b4\",\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,17 +78,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,7 +103,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'crime_rate_per_100k', 'crime_index', 'safety_tier', 'total_incidents']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" \"crime_index\",\n",
|
||||
" \"safety_tier\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +122,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'crime_rate_per_100k'\n",
|
||||
@@ -128,18 +136,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='crime_rate_per_100k',\n",
|
||||
" hover_data=['neighbourhood_name', 'crime_index', 'total_incidents'],\n",
|
||||
" color_scale='RdYlGn_r',\n",
|
||||
" title='Toronto Crime Rate per 100,000 Population',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"crime_rate_per_100k\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"crime_index\", \"total_incidents\"],\n",
|
||||
" color_scale=\"RdYlGn_r\",\n",
|
||||
" title=\"Toronto Crime Rate per 100,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,21 +77,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['year', 'date'],\n",
|
||||
" value_vars=['avg_assault_rate', 'avg_auto_theft_rate', 'avg_break_enter_rate'],\n",
|
||||
" var_name='crime_type',\n",
|
||||
" value_name='rate_per_100k'\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_assault_rate\", \"avg_auto_theft_rate\", \"avg_break_enter_rate\"],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"rate_per_100k\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_melted['crime_type'] = df_melted['crime_type'].map({\n",
|
||||
" 'avg_assault_rate': 'Assault',\n",
|
||||
" 'avg_auto_theft_rate': 'Auto Theft',\n",
|
||||
" 'avg_break_enter_rate': 'Break & Enter'\n",
|
||||
"})"
|
||||
"df_melted[\"crime_type\"] = df_melted[\"crime_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_assault_rate\": \"Assault\",\n",
|
||||
" \"avg_auto_theft_rate\": \"Auto Theft\",\n",
|
||||
" \"avg_break_enter_rate\": \"Break & Enter\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -106,7 +109,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['year', 'avg_crime_rate', 'total_city_incidents', 'avg_yoy_change']]"
|
||||
"df[[\"year\", \"avg_crime_rate\", \"total_city_incidents\", \"avg_yoy_change\"]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -127,22 +130,23 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='rate_per_100k',\n",
|
||||
" group_column='crime_type',\n",
|
||||
" title='Toronto Crime Trends by Type (5 Years)',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"rate_per_100k\",\n",
|
||||
" group_column=\"crime_type\",\n",
|
||||
" title=\"Toronto Crime Trends by Type (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Remove dollar sign formatting since this is rate data\n",
|
||||
"fig.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||||
"fig.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
@@ -161,15 +165,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Total crime rate trend\n",
|
||||
"total_data = df[['date', 'avg_crime_rate']].rename(columns={'avg_crime_rate': 'total_rate'}).to_dict('records')\n",
|
||||
"total_data = (\n",
|
||||
" df[[\"date\", \"avg_crime_rate\"]]\n",
|
||||
" .rename(columns={\"avg_crime_rate\": \"total_rate\"})\n",
|
||||
" .to_dict(\"records\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig2 = create_price_time_series(\n",
|
||||
" data=total_data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='total_rate',\n",
|
||||
" title='Toronto Overall Crime Rate Trend',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"total_rate\",\n",
|
||||
" title=\"Toronto Overall Crime Rate Trend\",\n",
|
||||
")\n",
|
||||
"fig2.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||||
"fig2.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"fig2.show()"
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user