refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled

- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-01 19:08:20 -05:00
parent a5d6866d63
commit 62d1a52eed
73 changed files with 1114 additions and 623 deletions

View File

View File

@@ -0,0 +1,183 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Age Distribution Analysis\n",
"\n",
"Compares median age and age index across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" median_age,\n",
" age_index,\n",
" city_avg_age,\n",
" population,\n",
" income_quintile,\n",
" pct_renter_occupied\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
" AND median_age IS NOT NULL\n",
"ORDER BY median_age DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with age data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent census year\n",
"2. Calculate deviation from city average\n",
"3. Classify as younger/older than average"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
")\n",
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
"\n",
"data = df.to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"City Average Age: {city_avg:.1f}\")\n",
"print(\"\\nYoungest Neighbourhoods:\")\n",
"display(\n",
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")\n",
"print(\"\\nOldest Neighbourhoods:\")\n",
"display(\n",
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"median_age\",\n",
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top=\"#FF9800\", # Orange for older\n",
" color_bottom=\"#2196F3\", # Blue for younger\n",
" value_format=\".1f\",\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Age vs Income Correlation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Age by income quintile\n",
"print(\"Median Age by Income Quintile:\")\n",
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,182 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Median Income Choropleth Map\n",
"\n",
"Displays median household income across Toronto's 158 neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_id,\n",
" neighbourhood_name,\n",
" geometry,\n",
" year,\n",
" median_household_income,\n",
" income_index,\n",
" income_quintile,\n",
" population,\n",
" unemployment_rate\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
"ORDER BY median_household_income DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent census year\n",
"2. Convert geometry to GeoJSON\n",
"3. Scale income to thousands for readability"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\n",
" [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n",
"].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"median_household_income\",\n",
" hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n",
" color_scale=\"Viridis\",\n",
" title=\"Toronto Median Household Income by Neighbourhood\",\n",
" zoom=10,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Income Quintile Distribution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n",
" [\"count\", \"mean\", \"min\", \"max\"]\n",
").round(0)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Population Density Bar Chart\n",
"\n",
"Shows population density (people per sq km) across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_demographics` | neighbourhood × year | population_density, population, land_area_sqkm |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" population_density,\n",
" population,\n",
" land_area_sqkm,\n",
" median_household_income,\n",
" pct_renter_occupied\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
" AND population_density IS NOT NULL\n",
"ORDER BY population_density DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Sort by population density\n",
"2. Select top 20 most dense neighbourhoods"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = df.head(20).to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[[\"neighbourhood_name\", \"population_density\", \"population\", \"land_area_sqkm\"]].head(\n",
" 10\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
"\n",
"fig = create_horizontal_bar(\n",
" data=data,\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"population_density\",\n",
" title=\"Top 20 Most Dense Neighbourhoods\",\n",
" color=\"#9C27B0\",\n",
" value_format=\",.0f\",\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Density Statistics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"City-wide Statistics:\")\n",
"print(f\" Total Population: {df['population'].sum():,.0f}\")\n",
"print(f\" Total Area: {df['land_area_sqkm'].sum():,.1f} sq km\")\n",
"print(f\" Average Density: {df['population_density'].mean():,.0f} per sq km\")\n",
"print(f\" Max Density: {df['population_density'].max():,.0f} per sq km\")\n",
"print(f\" Min Density: {df['population_density'].min():,.0f} per sq km\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}