refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled

- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-01 19:08:20 -05:00
parent a5d6866d63
commit 62d1a52eed
73 changed files with 1114 additions and 623 deletions

View File

@@ -0,0 +1,196 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Income vs Safety Scatter Plot\n",
"\n",
"Explores the correlation between median household income and safety score across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" median_household_income,\n",
" safety_score,\n",
" population,\n",
" livability_score,\n",
" crime_rate_per_100k\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
" AND median_household_income IS NOT NULL\n",
" AND safety_score IS NOT NULL\n",
"ORDER BY median_household_income DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with income and safety data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter out null values for income and safety\n",
"2. Optionally scale income to thousands for readability\n",
"3. Pass to scatter figure factory with optional trendline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scale income to thousands for better axis readability\n",
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"median_household_income\",\n",
" \"safety_score\",\n",
" \"crime_rate_per_100k\",\n",
" ]\n",
"].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_scatter_figure` from `portfolio_app.figures.toronto.scatter`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'income_thousands' (median household income in $K)\n",
"- `y_column`: 'safety_score' (0-100 percentile rank)\n",
"- `name_column`: 'neighbourhood_name' (hover label)\n",
"- `size_column`: 'population' (optional, bubble size)\n",
"- `trendline`: True (adds OLS regression line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.scatter import create_scatter_figure\n",
"\n",
"fig = create_scatter_figure(\n",
" data=data,\n",
" x_column=\"income_thousands\",\n",
" y_column=\"safety_score\",\n",
" name_column=\"neighbourhood_name\",\n",
" size_column=\"population\",\n",
" title=\"Income vs Safety by Neighbourhood\",\n",
" x_title=\"Median Household Income ($K)\",\n",
" y_title=\"Safety Score (0-100)\",\n",
" trendline=True,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpretation\n",
"\n",
"This scatter plot reveals the relationship between income and safety:\n",
"\n",
"- **Positive correlation**: Higher income neighbourhoods tend to have higher safety scores\n",
"- **Bubble size**: Represents population (larger = more people)\n",
"- **Trendline**: Orange dashed line shows the overall trend\n",
"- **Outliers**: Neighbourhoods far from the trendline are interesting cases\n",
" - Above line: Safer than income would predict\n",
" - Below line: Less safe than income would predict"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate correlation coefficient\n",
"correlation = df[\"median_household_income\"].corr(df[\"safety_score\"])\n",
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,201 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Livability Score Choropleth Map\n",
"\n",
"Displays neighbourhood livability scores on an interactive map of Toronto's 158 neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | livability_score, safety_score, affordability_score, amenity_score, geometry |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_id,\n",
" neighbourhood_name,\n",
" geometry,\n",
" year,\n",
" livability_score,\n",
" safety_score,\n",
" affordability_score,\n",
" amenity_score,\n",
" population,\n",
" median_household_income\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year of data\n",
"2. Extract GeoJSON from PostGIS geometry column\n",
"3. Pass to choropleth figure factory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Transform geometry to GeoJSON\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"# Convert WKB geometry to GeoDataFrame\n",
"gdf = gpd.GeoDataFrame(\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"# Create GeoJSON FeatureCollection\n",
"geojson = json.loads(gdf.to_json())\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"livability_score\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ]\n",
"].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
"- `data`: List of dicts with neighbourhood_id and scores\n",
"- `location_key`: 'neighbourhood_id'\n",
"- `color_column`: 'livability_score' (or safety_score, etc.)\n",
"- `color_scale`: 'RdYlGn' (red=low, yellow=mid, green=high)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"livability_score\",\n",
" hover_data=[\n",
" \"neighbourhood_name\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ],\n",
" color_scale=\"RdYlGn\",\n",
" title=\"Toronto Neighbourhood Livability Score\",\n",
" zoom=10,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Score Components\n",
"\n",
"The livability score is a weighted composite:\n",
"\n",
"| Component | Weight | Source |\n",
"|-----------|--------|--------|\n",
"| Safety | 30% | Inverse of crime rate per 100K |\n",
"| Affordability | 40% | Inverse of rent-to-income ratio |\n",
"| Amenities | 30% | Amenities per 1,000 residents |"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,173 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Top & Bottom 10 Neighbourhoods Bar Chart\n",
"\n",
"Horizontal bar chart showing the highest and lowest scoring neighbourhoods by livability."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" livability_score,\n",
" safety_score,\n",
" affordability_score,\n",
" amenity_score\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
" AND livability_score IS NOT NULL\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with scores\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Sort by livability_score descending\n",
"2. Take top 10 and bottom 10\n",
"3. Pass to ranking bar figure factory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The figure factory handles top/bottom selection internally\n",
"# Just prepare as list of dicts\n",
"data = df.to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Top 5:\")\n",
"display(df.head(5))\n",
"print(\"\\nBottom 5:\")\n",
"display(df.tail(5))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `data`: List of dicts with all neighbourhoods\n",
"- `name_column`: 'neighbourhood_name'\n",
"- `value_column`: 'livability_score'\n",
"- `top_n`: 10 (green bars)\n",
"- `bottom_n`: 10 (red bars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"livability_score\",\n",
" title=\"Top & Bottom 10 Neighbourhoods by Livability\",\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top=\"#4CAF50\", # Green for top performers\n",
" color_bottom=\"#F44336\", # Red for bottom performers\n",
" value_format=\".1f\",\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpretation\n",
"\n",
"- **Green bars**: Highest livability scores (best combination of safety, affordability, and amenities)\n",
"- **Red bars**: Lowest livability scores (areas that may need targeted investment)\n",
"\n",
"The ranking bar chart provides quick context for which neighbourhoods stand out at either extreme."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}