refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled

- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-01 19:08:20 -05:00
parent a5d6866d63
commit 62d1a52eed
73 changed files with 1114 additions and 623 deletions

View File

@@ -0,0 +1,201 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Livability Score Choropleth Map\n",
"\n",
"Displays neighbourhood livability scores on an interactive map of Toronto's 158 neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | livability_score, safety_score, affordability_score, amenity_score, geometry |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_id,\n",
" neighbourhood_name,\n",
" geometry,\n",
" year,\n",
" livability_score,\n",
" safety_score,\n",
" affordability_score,\n",
" amenity_score,\n",
" population,\n",
" median_household_income\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year of data\n",
"2. Extract GeoJSON from PostGIS geometry column\n",
"3. Pass to choropleth figure factory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Transform geometry to GeoJSON\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"# Convert WKB geometry to GeoDataFrame\n",
"gdf = gpd.GeoDataFrame(\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"# Create GeoJSON FeatureCollection\n",
"geojson = json.loads(gdf.to_json())\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"livability_score\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ]\n",
"].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
"- `data`: List of dicts with neighbourhood_id and scores\n",
"- `location_key`: 'neighbourhood_id'\n",
"- `color_column`: 'livability_score' (or safety_score, etc.)\n",
"- `color_scale`: 'RdYlGn' (red=low, yellow=mid, green=high)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"livability_score\",\n",
" hover_data=[\n",
" \"neighbourhood_name\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ],\n",
" color_scale=\"RdYlGn\",\n",
" title=\"Toronto Neighbourhood Livability Score\",\n",
" zoom=10,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Score Components\n",
"\n",
"The livability score is a weighted composite:\n",
"\n",
"| Component | Weight | Source |\n",
"|-----------|--------|--------|\n",
"| Safety | 30% | Inverse of crime rate per 100K |\n",
"| Affordability | 40% | Inverse of rent-to-income ratio |\n",
"| Amenities | 30% | Amenities per 1,000 residents |"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}