refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio - Restructure dbt models into domain subdirectories: - shared/ for cross-domain dimensions (dim_time) - staging/toronto/, intermediate/toronto/, marts/toronto/ - Update SQLAlchemy models for raw_toronto schema - Add explicit cross-schema FK relationships for FactRentals - Namespace figure factories under figures/toronto/ - Namespace notebooks under notebooks/toronto/ - Update Makefile with domain-specific targets and env loading - Update all documentation for multi-dashboard structure This enables adding new dashboard projects (e.g., /football, /energy) without structural conflicts or naming collisions. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
386
portfolio_app/figures/toronto/time_series.py
Normal file
386
portfolio_app/figures/toronto/time_series.py
Normal file
@@ -0,0 +1,386 @@
|
||||
"""Time series figure factories for Toronto housing data."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
|
||||
def create_price_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
price_column: str = "avg_price",
|
||||
group_column: str | None = None,
|
||||
title: str = "Average Price Over Time",
|
||||
show_yoy: bool = True,
|
||||
) -> go.Figure:
|
||||
"""Create a time series chart for price data.
|
||||
|
||||
Args:
|
||||
data: List of records with date and price columns.
|
||||
date_column: Column name for dates.
|
||||
price_column: Column name for price values.
|
||||
group_column: Optional column for grouping (e.g., district_code).
|
||||
title: Chart title.
|
||||
show_yoy: Whether to show year-over-year change annotations.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
)
|
||||
return fig
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=price_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=price_column,
|
||||
title=title,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
margin={"l": 40, "r": 20, "t": 50, "b": 40},
|
||||
xaxis_title="Date",
|
||||
yaxis_title=price_column.replace("_", " ").title(),
|
||||
yaxis_tickprefix="$",
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_volume_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
volume_column: str = "sales_count",
|
||||
group_column: str | None = None,
|
||||
title: str = "Sales Volume Over Time",
|
||||
chart_type: str = "bar",
|
||||
) -> go.Figure:
|
||||
"""Create a time series chart for volume/count data.
|
||||
|
||||
Args:
|
||||
data: List of records with date and volume columns.
|
||||
date_column: Column name for dates.
|
||||
volume_column: Column name for volume values.
|
||||
group_column: Optional column for grouping.
|
||||
title: Chart title.
|
||||
chart_type: 'bar' or 'line'.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
)
|
||||
return fig
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
if chart_type == "bar":
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.bar(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.bar(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
margin={"l": 40, "r": 20, "t": 50, "b": 40},
|
||||
xaxis_title="Date",
|
||||
yaxis_title=volume_column.replace("_", " ").title(),
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_market_comparison_chart(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
metrics: list[str] | None = None,
|
||||
title: str = "Market Indicators",
|
||||
) -> go.Figure:
|
||||
"""Create a multi-metric comparison chart.
|
||||
|
||||
Args:
|
||||
data: List of records with date and metric columns.
|
||||
date_column: Column name for dates.
|
||||
metrics: List of metric columns to display.
|
||||
title: Chart title.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object with secondary y-axis.
|
||||
"""
|
||||
import pandas as pd
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=400,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
)
|
||||
return fig
|
||||
|
||||
if metrics is None:
|
||||
metrics = ["avg_price", "sales_count"]
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
||||
|
||||
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
|
||||
|
||||
for i, metric in enumerate(metrics[:4]):
|
||||
if metric not in df.columns:
|
||||
continue
|
||||
|
||||
secondary = i > 0
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=df[date_column],
|
||||
y=df[metric],
|
||||
name=metric.replace("_", " ").title(),
|
||||
line={"color": colors[i % len(colors)]},
|
||||
),
|
||||
secondary_y=secondary,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=400,
|
||||
margin={"l": 40, "r": 40, "t": 50, "b": 40},
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
legend={
|
||||
"orientation": "h",
|
||||
"yanchor": "bottom",
|
||||
"y": 1.02,
|
||||
"xanchor": "right",
|
||||
"x": 1,
|
||||
"font": {"color": "#c9c9c9"},
|
||||
},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def add_policy_markers(
|
||||
fig: go.Figure,
|
||||
policy_events: list[dict[str, Any]],
|
||||
date_column: str = "event_date",
|
||||
y_position: float | None = None,
|
||||
) -> go.Figure:
|
||||
"""Add policy event markers to an existing time series figure.
|
||||
|
||||
Args:
|
||||
fig: Existing Plotly figure to add markers to.
|
||||
policy_events: List of policy event dicts with date and metadata.
|
||||
date_column: Column name for event dates.
|
||||
y_position: Y position for markers. If None, uses top of chart.
|
||||
|
||||
Returns:
|
||||
Updated Plotly Figure object with policy markers.
|
||||
"""
|
||||
if not policy_events:
|
||||
return fig
|
||||
|
||||
# Color mapping for policy categories
|
||||
category_colors = {
|
||||
"monetary": "#1f77b4", # Blue
|
||||
"tax": "#2ca02c", # Green
|
||||
"regulatory": "#ff7f0e", # Orange
|
||||
"supply": "#9467bd", # Purple
|
||||
"economic": "#d62728", # Red
|
||||
}
|
||||
|
||||
# Symbol mapping for expected direction
|
||||
direction_symbols = {
|
||||
"bullish": "triangle-up",
|
||||
"bearish": "triangle-down",
|
||||
"neutral": "circle",
|
||||
}
|
||||
|
||||
for event in policy_events:
|
||||
event_date = event.get(date_column)
|
||||
category = event.get("category", "economic")
|
||||
direction = event.get("expected_direction", "neutral")
|
||||
title = event.get("title", "Policy Event")
|
||||
level = event.get("level", "federal")
|
||||
|
||||
color = category_colors.get(category, "#666666")
|
||||
symbol = direction_symbols.get(direction, "circle")
|
||||
|
||||
# Add vertical line for the event
|
||||
fig.add_vline(
|
||||
x=event_date,
|
||||
line_dash="dot",
|
||||
line_color=color,
|
||||
opacity=0.5,
|
||||
annotation_text="",
|
||||
)
|
||||
|
||||
# Add marker with hover info
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=[event_date],
|
||||
y=[y_position] if y_position else [None], # type: ignore[list-item]
|
||||
mode="markers",
|
||||
marker={
|
||||
"symbol": symbol,
|
||||
"size": 12,
|
||||
"color": color,
|
||||
"line": {"width": 1, "color": "white"},
|
||||
},
|
||||
name=title,
|
||||
hovertemplate=(
|
||||
f"<b>{title}</b><br>"
|
||||
f"Date: %{{x}}<br>"
|
||||
f"Level: {level.title()}<br>"
|
||||
f"Category: {category.title()}<br>"
|
||||
f"<extra></extra>"
|
||||
),
|
||||
showlegend=False,
|
||||
)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_time_series_with_events(
|
||||
data: list[dict[str, Any]],
|
||||
policy_events: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
value_column: str = "avg_price",
|
||||
title: str = "Price Trend with Policy Events",
|
||||
) -> go.Figure:
|
||||
"""Create a time series chart with policy event markers.
|
||||
|
||||
Args:
|
||||
data: Time series data.
|
||||
policy_events: Policy events to overlay.
|
||||
date_column: Column name for dates.
|
||||
value_column: Column name for values.
|
||||
title: Chart title.
|
||||
|
||||
Returns:
|
||||
Plotly Figure with time series and policy markers.
|
||||
"""
|
||||
# Create base time series
|
||||
fig = create_price_time_series(
|
||||
data=data,
|
||||
date_column=date_column,
|
||||
price_column=value_column,
|
||||
title=title,
|
||||
)
|
||||
|
||||
# Add policy markers at the top of the chart
|
||||
if policy_events:
|
||||
fig = add_policy_markers(fig, policy_events)
|
||||
|
||||
return fig
|
||||
Reference in New Issue
Block a user