feat: Implement Phase 4 dbt model restructuring

Create neighbourhood-centric dbt transformation layer:

Staging (5 models):
- stg_toronto__neighbourhoods - Neighbourhood dimension
- stg_toronto__census - Census demographics
- stg_toronto__crime - Crime statistics
- stg_toronto__amenities - Amenity counts
- stg_cmhc__zone_crosswalk - Zone-to-neighbourhood weights

Intermediate (5 models):
- int_neighbourhood__demographics - Combined census with quintiles
- int_neighbourhood__housing - Housing + affordability indicators
- int_neighbourhood__crime_summary - Aggregated crime with YoY
- int_neighbourhood__amenity_scores - Per-capita amenity metrics
- int_rentals__neighbourhood_allocated - CMHC via area weights

Marts (5 models):
- mart_neighbourhood_overview - Composite livability score
- mart_neighbourhood_housing - Affordability index
- mart_neighbourhood_safety - Crime rates per 100K
- mart_neighbourhood_demographics - Income/age indices
- mart_neighbourhood_amenities - Amenity index

Closes #60, #61, #62, #63

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-16 11:41:27 -05:00
parent 053acf6436
commit b6d210ec6b
20 changed files with 1245 additions and 0 deletions

View File

@@ -0,0 +1,89 @@
-- Mart: Neighbourhood Amenities Analysis
-- Dashboard Tab: Amenities
-- Grain: One row per neighbourhood per year
with amenities as (
select * from {{ ref('int_neighbourhood__amenity_scores') }}
),
-- City-wide averages for comparison
city_avg as (
select
year,
avg(parks_per_1000) as city_avg_parks,
avg(schools_per_1000) as city_avg_schools,
avg(transit_per_1000) as city_avg_transit,
avg(total_amenities_per_1000) as city_avg_total_amenities
from amenities
group by year
),
final as (
select
a.neighbourhood_id,
a.neighbourhood_name,
a.geometry,
a.population,
a.land_area_sqkm,
a.year,
-- Raw counts
a.parks_count,
a.schools_count,
a.transit_count,
a.libraries_count,
a.community_centres_count,
a.recreation_count,
a.total_amenities,
-- Per 1000 population
a.parks_per_1000,
a.schools_per_1000,
a.transit_per_1000,
a.total_amenities_per_1000,
-- Per square km
a.amenities_per_sqkm,
-- City averages
round(ca.city_avg_parks::numeric, 3) as city_avg_parks_per_1000,
round(ca.city_avg_schools::numeric, 3) as city_avg_schools_per_1000,
round(ca.city_avg_transit::numeric, 3) as city_avg_transit_per_1000,
-- Amenity index (100 = city average)
case
when ca.city_avg_total_amenities > 0
then round(a.total_amenities_per_1000 / ca.city_avg_total_amenities * 100, 1)
else null
end as amenity_index,
-- Category indices
case
when ca.city_avg_parks > 0
then round(a.parks_per_1000 / ca.city_avg_parks * 100, 1)
else null
end as parks_index,
case
when ca.city_avg_schools > 0
then round(a.schools_per_1000 / ca.city_avg_schools * 100, 1)
else null
end as schools_index,
case
when ca.city_avg_transit > 0
then round(a.transit_per_1000 / ca.city_avg_transit * 100, 1)
else null
end as transit_index,
-- Amenity tier (1 = best, 5 = lowest)
ntile(5) over (
partition by a.year
order by a.total_amenities_per_1000 desc
) as amenity_tier
from amenities a
left join city_avg ca on a.year = ca.year
)
select * from final