feat: Complete Phase 5 dashboard implementation

Implement full 5-tab Toronto Neighbourhood Dashboard with real data
connectivity:

Dashboard Structure:
- Overview tab with livability scores and rankings
- Housing tab with affordability metrics
- Safety tab with crime statistics
- Demographics tab with population/income data
- Amenities tab with parks, schools, transit

Figure Factories (portfolio_app/figures/):
- bar_charts.py: ranking, stacked, horizontal bars
- scatter.py: scatter plots, bubble charts
- radar.py: spider/radar charts
- demographics.py: donut, age pyramid, income distribution

Service Layer (portfolio_app/toronto/services/):
- neighbourhood_service.py: queries dbt marts for all tab data
- geometry_service.py: generates GeoJSON from PostGIS
- Graceful error handling when database unavailable

Callbacks (portfolio_app/pages/toronto/callbacks/):
- map_callbacks.py: choropleth updates, map click handling
- chart_callbacks.py: supporting chart updates
- selection_callbacks.py: dropdown handlers, KPI updates

Data Pipeline (scripts/data/):
- load_toronto_data.py: orchestration script with CLI flags

Lessons Learned:
- Graceful error handling in service layers
- Modular callback structure for multi-tab dashboards
- Figure factory pattern for reusable charts

Closes: #64, #65, #66, #67, #68, #69, #70

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-17 11:46:18 -05:00
parent 3054441630
commit c9cf744d84
27 changed files with 4377 additions and 1770 deletions

View File

@@ -1,62 +1,56 @@
"""Toronto Housing Dashboard page."""
"""Toronto Neighbourhood Dashboard page.
Displays neighbourhood-level data across 5 tabs: Overview, Housing, Safety,
Demographics, and Amenities. Each tab provides interactive choropleth maps,
KPI cards, and supporting charts.
"""
import dash
import dash_mantine_components as dmc
from dash import dcc, html
from dash import dcc
from dash_iconify import DashIconify
from portfolio_app.components import (
create_map_controls,
create_metric_cards_row,
create_time_slider,
create_year_selector,
from portfolio_app.pages.toronto.tabs import (
create_amenities_tab,
create_demographics_tab,
create_housing_tab,
create_overview_tab,
create_safety_tab,
)
dash.register_page(__name__, path="/toronto", name="Toronto Housing")
dash.register_page(__name__, path="/toronto", name="Toronto Neighbourhoods")
# Metric options for the purchase market
PURCHASE_METRIC_OPTIONS = [
{"label": "Average Price", "value": "avg_price"},
{"label": "Median Price", "value": "median_price"},
{"label": "Sales Volume", "value": "sales_count"},
{"label": "Days on Market", "value": "avg_dom"},
]
# Metric options for the rental market
RENTAL_METRIC_OPTIONS = [
{"label": "Average Rent", "value": "avg_rent"},
{"label": "Vacancy Rate", "value": "vacancy_rate"},
{"label": "Rental Universe", "value": "rental_universe"},
]
# Sample metrics for KPI cards (will be populated by callbacks)
SAMPLE_METRICS = [
# Tab configuration
TAB_CONFIG = [
{
"title": "Avg. Price",
"value": 1125000,
"delta": 2.3,
"prefix": "$",
"format_spec": ",.0f",
"value": "overview",
"label": "Overview",
"icon": "tabler:chart-pie",
"color": "blue",
},
{
"title": "Sales Volume",
"value": 4850,
"delta": -5.1,
"format_spec": ",",
"value": "housing",
"label": "Housing",
"icon": "tabler:home",
"color": "teal",
},
{
"title": "Avg. DOM",
"value": 18,
"delta": 3,
"suffix": " days",
"positive_is_good": False,
"value": "safety",
"label": "Safety",
"icon": "tabler:shield-check",
"color": "orange",
},
{
"title": "Avg. Rent",
"value": 2450,
"delta": 4.2,
"prefix": "$",
"format_spec": ",.0f",
"value": "demographics",
"label": "Demographics",
"icon": "tabler:users",
"color": "violet",
},
{
"value": "amenities",
"label": "Amenities",
"icon": "tabler:trees",
"color": "green",
},
]
@@ -67,9 +61,9 @@ def create_header() -> dmc.Group:
[
dmc.Stack(
[
dmc.Title("Toronto Housing Dashboard", order=1),
dmc.Title("Toronto Neighbourhood Dashboard", order=1),
dmc.Text(
"Real estate market analysis for the Greater Toronto Area",
"Explore livability across 158 Toronto neighbourhoods",
c="dimmed",
),
],
@@ -88,11 +82,17 @@ def create_header() -> dmc.Group:
),
href="/toronto/methodology",
),
create_year_selector(
id_prefix="toronto",
min_year=2020,
default_year=2024,
label="Year",
dmc.Select(
id="toronto-year-select",
data=[
{"value": "2021", "label": "2021"},
{"value": "2022", "label": "2022"},
{"value": "2023", "label": "2023"},
],
value="2021",
label="Census Year",
size="sm",
w=120,
),
],
gap="md",
@@ -103,187 +103,100 @@ def create_header() -> dmc.Group:
)
def create_kpi_section() -> dmc.Box:
"""Create the KPI metrics row."""
return dmc.Box(
children=[
dmc.Title("Key Metrics", order=3, size="h4", mb="sm"),
html.Div(
id="toronto-kpi-cards",
children=[
create_metric_cards_row(SAMPLE_METRICS, id_prefix="toronto-kpi")
],
),
],
)
def create_purchase_map_section() -> dmc.Grid:
"""Create the purchase market choropleth section."""
return dmc.Grid(
[
dmc.GridCol(
create_map_controls(
id_prefix="purchase-map",
metric_options=PURCHASE_METRIC_OPTIONS,
default_metric="avg_price",
),
span={"base": 12, "md": 3},
),
dmc.GridCol(
dmc.Paper(
children=[
dcc.Graph(
id="purchase-choropleth",
config={"scrollZoom": True},
style={"height": "500px"},
),
],
p="xs",
radius="sm",
withBorder=True,
),
span={"base": 12, "md": 9},
),
],
gutter="md",
)
def create_rental_map_section() -> dmc.Grid:
"""Create the rental market choropleth section."""
return dmc.Grid(
[
dmc.GridCol(
create_map_controls(
id_prefix="rental-map",
metric_options=RENTAL_METRIC_OPTIONS,
default_metric="avg_rent",
),
span={"base": 12, "md": 3},
),
dmc.GridCol(
dmc.Paper(
children=[
dcc.Graph(
id="rental-choropleth",
config={"scrollZoom": True},
style={"height": "500px"},
),
],
p="xs",
radius="sm",
withBorder=True,
),
span={"base": 12, "md": 9},
),
],
gutter="md",
)
def create_time_series_section() -> dmc.Grid:
"""Create the time series charts section."""
return dmc.Grid(
[
dmc.GridCol(
dmc.Paper(
children=[
dmc.Title("Price Trends", order=4, size="h5", mb="sm"),
dcc.Graph(
id="price-time-series",
config={"displayModeBar": False},
style={"height": "350px"},
),
],
p="md",
radius="sm",
withBorder=True,
),
span={"base": 12, "md": 6},
),
dmc.GridCol(
dmc.Paper(
children=[
dmc.Title("Sales Volume", order=4, size="h5", mb="sm"),
dcc.Graph(
id="volume-time-series",
config={"displayModeBar": False},
style={"height": "350px"},
),
],
p="md",
radius="sm",
withBorder=True,
),
span={"base": 12, "md": 6},
),
],
gutter="md",
)
def create_market_comparison_section() -> dmc.Paper:
"""Create the market comparison chart section."""
def create_neighbourhood_selector() -> dmc.Paper:
"""Create the neighbourhood search/select component."""
return dmc.Paper(
children=[
dmc.Group(
[
dmc.Title("Market Indicators", order=4, size="h5"),
create_time_slider(
id_prefix="market-comparison",
min_year=2020,
label="",
),
],
justify="space-between",
align="center",
mb="md",
),
dcc.Graph(
id="market-comparison-chart",
config={"displayModeBar": False},
style={"height": "400px"},
),
],
p="md",
dmc.Group(
[
DashIconify(icon="tabler:search", width=20, color="gray"),
dmc.Select(
id="toronto-neighbourhood-select",
placeholder="Search neighbourhoods...",
searchable=True,
clearable=True,
data=[], # Populated by callback
style={"flex": 1},
),
dmc.Button(
"Compare",
id="toronto-compare-btn",
leftSection=DashIconify(icon="tabler:git-compare", width=16),
variant="light",
disabled=True,
),
],
gap="sm",
),
p="sm",
radius="sm",
withBorder=True,
)
def create_tab_navigation() -> dmc.Tabs:
"""Create the tab navigation with icons."""
return dmc.Tabs(
[
dmc.TabsList(
[
dmc.TabsTab(
dmc.Group(
[
DashIconify(icon=tab["icon"], width=18),
dmc.Text(tab["label"], size="sm"),
],
gap="xs",
),
value=tab["value"],
)
for tab in TAB_CONFIG
],
grow=True,
),
# Tab panels
dmc.TabsPanel(create_overview_tab(), value="overview", pt="md"),
dmc.TabsPanel(create_housing_tab(), value="housing", pt="md"),
dmc.TabsPanel(create_safety_tab(), value="safety", pt="md"),
dmc.TabsPanel(create_demographics_tab(), value="demographics", pt="md"),
dmc.TabsPanel(create_amenities_tab(), value="amenities", pt="md"),
],
id="toronto-tabs",
value="overview",
variant="default",
)
def create_data_notice() -> dmc.Alert:
"""Create a notice about data availability."""
"""Create a notice about data sources."""
return dmc.Alert(
children=[
dmc.Text(
"This dashboard displays Toronto neighbourhood and CMHC rental data. "
"Sample data is shown for demonstration purposes.",
"Data from Toronto Open Data (Census 2021, Crime Statistics) and "
"CMHC Rental Market Reports. Click neighbourhoods on the map for details.",
size="sm",
),
],
title="Data Notice",
title="Data Sources",
color="blue",
variant="light",
icon=DashIconify(icon="tabler:info-circle", width=20),
)
# Store for selected neighbourhood
neighbourhood_store = dcc.Store(id="toronto-selected-neighbourhood", data=None)
# Register callbacks
from portfolio_app.pages.toronto import callbacks # noqa: E402, F401
layout = dmc.Container(
dmc.Stack(
[
neighbourhood_store,
create_header(),
create_data_notice(),
create_kpi_section(),
dmc.Divider(my="md", label="Purchase Market", labelPosition="center"),
create_purchase_map_section(),
dmc.Divider(my="md", label="Rental Market", labelPosition="center"),
create_rental_map_section(),
dmc.Divider(my="md", label="Trends", labelPosition="center"),
create_time_series_section(),
create_market_comparison_section(),
create_neighbourhood_selector(),
create_tab_navigation(),
dmc.Space(h=40),
],
gap="lg",