development #95
14
portfolio_app/components/__init__.py
Normal file
14
portfolio_app/components/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
"""Shared Dash components for the portfolio application."""
|
||||
|
||||
from .map_controls import create_map_controls, create_metric_selector
|
||||
from .metric_card import MetricCard, create_metric_cards_row
|
||||
from .time_slider import create_time_slider, create_year_selector
|
||||
|
||||
__all__ = [
|
||||
"create_map_controls",
|
||||
"create_metric_selector",
|
||||
"create_time_slider",
|
||||
"create_year_selector",
|
||||
"MetricCard",
|
||||
"create_metric_cards_row",
|
||||
]
|
||||
79
portfolio_app/components/map_controls.py
Normal file
79
portfolio_app/components/map_controls.py
Normal file
@@ -0,0 +1,79 @@
|
||||
"""Map control components for choropleth visualizations."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
from dash import html
|
||||
|
||||
|
||||
def create_metric_selector(
|
||||
id_prefix: str,
|
||||
options: list[dict[str, str]],
|
||||
default_value: str | None = None,
|
||||
label: str = "Select Metric",
|
||||
) -> dmc.Select:
|
||||
"""Create a metric selector dropdown.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
options: List of options with 'label' and 'value' keys.
|
||||
default_value: Initial selected value.
|
||||
label: Label text for the selector.
|
||||
|
||||
Returns:
|
||||
Mantine Select component.
|
||||
"""
|
||||
return dmc.Select(
|
||||
id=f"{id_prefix}-metric-selector",
|
||||
label=label,
|
||||
data=options,
|
||||
value=default_value or (options[0]["value"] if options else None),
|
||||
style={"width": "200px"},
|
||||
)
|
||||
|
||||
|
||||
def create_map_controls(
|
||||
id_prefix: str,
|
||||
metric_options: list[dict[str, str]],
|
||||
default_metric: str | None = None,
|
||||
show_layer_toggle: bool = True,
|
||||
) -> dmc.Paper:
|
||||
"""Create a control panel for map visualizations.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
metric_options: Options for metric selector.
|
||||
default_metric: Default selected metric.
|
||||
show_layer_toggle: Whether to show layer visibility toggle.
|
||||
|
||||
Returns:
|
||||
Mantine Paper component containing controls.
|
||||
"""
|
||||
controls: list[Any] = [
|
||||
create_metric_selector(
|
||||
id_prefix=id_prefix,
|
||||
options=metric_options,
|
||||
default_value=default_metric,
|
||||
label="Display Metric",
|
||||
),
|
||||
]
|
||||
|
||||
if show_layer_toggle:
|
||||
controls.append(
|
||||
dmc.Switch(
|
||||
id=f"{id_prefix}-layer-toggle",
|
||||
label="Show Boundaries",
|
||||
checked=True,
|
||||
style={"marginTop": "10px"},
|
||||
)
|
||||
)
|
||||
|
||||
return dmc.Paper(
|
||||
children=[
|
||||
dmc.Text("Map Controls", fw=500, size="sm", mb="xs"),
|
||||
html.Div(controls),
|
||||
],
|
||||
p="md",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
)
|
||||
115
portfolio_app/components/metric_card.py
Normal file
115
portfolio_app/components/metric_card.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""Metric card components for KPI display."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
from dash import dcc
|
||||
|
||||
from portfolio_app.figures.summary_cards import create_metric_card_figure
|
||||
|
||||
|
||||
class MetricCard:
|
||||
"""A reusable metric card component."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id_prefix: str,
|
||||
title: str,
|
||||
value: float | int | str = 0,
|
||||
delta: float | None = None,
|
||||
prefix: str = "",
|
||||
suffix: str = "",
|
||||
format_spec: str = ",.0f",
|
||||
positive_is_good: bool = True,
|
||||
):
|
||||
"""Initialize a metric card.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
title: Card title.
|
||||
value: Main metric value.
|
||||
delta: Change value for delta indicator.
|
||||
prefix: Value prefix (e.g., '$').
|
||||
suffix: Value suffix.
|
||||
format_spec: Python format specification.
|
||||
positive_is_good: Whether positive delta is good.
|
||||
"""
|
||||
self.id_prefix = id_prefix
|
||||
self.title = title
|
||||
self.value = value
|
||||
self.delta = delta
|
||||
self.prefix = prefix
|
||||
self.suffix = suffix
|
||||
self.format_spec = format_spec
|
||||
self.positive_is_good = positive_is_good
|
||||
|
||||
def render(self) -> dmc.Paper:
|
||||
"""Render the metric card component.
|
||||
|
||||
Returns:
|
||||
Mantine Paper component with embedded graph.
|
||||
"""
|
||||
fig = create_metric_card_figure(
|
||||
value=self.value,
|
||||
title=self.title,
|
||||
delta=self.delta,
|
||||
prefix=self.prefix,
|
||||
suffix=self.suffix,
|
||||
format_spec=self.format_spec,
|
||||
positive_is_good=self.positive_is_good,
|
||||
)
|
||||
|
||||
return dmc.Paper(
|
||||
children=[
|
||||
dcc.Graph(
|
||||
id=f"{self.id_prefix}-graph",
|
||||
figure=fig,
|
||||
config={"displayModeBar": False},
|
||||
style={"height": "120px"},
|
||||
)
|
||||
],
|
||||
p="xs",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
)
|
||||
|
||||
|
||||
def create_metric_cards_row(
|
||||
metrics: list[dict[str, Any]],
|
||||
id_prefix: str = "metric",
|
||||
) -> dmc.SimpleGrid:
|
||||
"""Create a row of metric cards.
|
||||
|
||||
Args:
|
||||
metrics: List of metric configurations with keys:
|
||||
- title: Card title
|
||||
- value: Metric value
|
||||
- delta: Optional change value
|
||||
- prefix: Optional value prefix
|
||||
- suffix: Optional value suffix
|
||||
- format_spec: Optional format specification
|
||||
- positive_is_good: Optional delta color logic
|
||||
id_prefix: Prefix for component IDs.
|
||||
|
||||
Returns:
|
||||
Mantine SimpleGrid component with metric cards.
|
||||
"""
|
||||
cards = []
|
||||
for i, metric in enumerate(metrics):
|
||||
card = MetricCard(
|
||||
id_prefix=f"{id_prefix}-{i}",
|
||||
title=metric.get("title", ""),
|
||||
value=metric.get("value", 0),
|
||||
delta=metric.get("delta"),
|
||||
prefix=metric.get("prefix", ""),
|
||||
suffix=metric.get("suffix", ""),
|
||||
format_spec=metric.get("format_spec", ",.0f"),
|
||||
positive_is_good=metric.get("positive_is_good", True),
|
||||
)
|
||||
cards.append(card.render())
|
||||
|
||||
return dmc.SimpleGrid(
|
||||
cols={"base": 1, "sm": 2, "md": len(cards)},
|
||||
spacing="md",
|
||||
children=cards,
|
||||
)
|
||||
135
portfolio_app/components/time_slider.py
Normal file
135
portfolio_app/components/time_slider.py
Normal file
@@ -0,0 +1,135 @@
|
||||
"""Time selection components for temporal data filtering."""
|
||||
|
||||
from datetime import date
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
|
||||
def create_year_selector(
|
||||
id_prefix: str,
|
||||
min_year: int = 2020,
|
||||
max_year: int | None = None,
|
||||
default_year: int | None = None,
|
||||
label: str = "Select Year",
|
||||
) -> dmc.Select:
|
||||
"""Create a year selector dropdown.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
min_year: Minimum year option.
|
||||
max_year: Maximum year option (defaults to current year).
|
||||
default_year: Initial selected year.
|
||||
label: Label text for the selector.
|
||||
|
||||
Returns:
|
||||
Mantine Select component.
|
||||
"""
|
||||
if max_year is None:
|
||||
max_year = date.today().year
|
||||
|
||||
if default_year is None:
|
||||
default_year = max_year
|
||||
|
||||
years = list(range(max_year, min_year - 1, -1))
|
||||
options = [{"label": str(year), "value": str(year)} for year in years]
|
||||
|
||||
return dmc.Select(
|
||||
id=f"{id_prefix}-year-selector",
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_year),
|
||||
style={"width": "120px"},
|
||||
)
|
||||
|
||||
|
||||
def create_time_slider(
|
||||
id_prefix: str,
|
||||
min_year: int = 2020,
|
||||
max_year: int | None = None,
|
||||
default_range: tuple[int, int] | None = None,
|
||||
label: str = "Time Range",
|
||||
) -> dmc.Paper:
|
||||
"""Create a time range slider component.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
min_year: Minimum year for the slider.
|
||||
max_year: Maximum year for the slider.
|
||||
default_range: Default (start, end) year range.
|
||||
label: Label text for the slider.
|
||||
|
||||
Returns:
|
||||
Mantine Paper component containing the slider.
|
||||
"""
|
||||
if max_year is None:
|
||||
max_year = date.today().year
|
||||
|
||||
if default_range is None:
|
||||
default_range = (min_year, max_year)
|
||||
|
||||
# Create marks for every year
|
||||
marks = [
|
||||
{"value": year, "label": str(year)} for year in range(min_year, max_year + 1)
|
||||
]
|
||||
|
||||
return dmc.Paper(
|
||||
children=[
|
||||
dmc.Text(label, fw=500, size="sm", mb="xs"),
|
||||
dmc.RangeSlider(
|
||||
id=f"{id_prefix}-time-slider",
|
||||
min=min_year,
|
||||
max=max_year,
|
||||
value=list(default_range),
|
||||
marks=marks,
|
||||
step=1,
|
||||
minRange=1,
|
||||
style={"marginTop": "20px", "marginBottom": "10px"},
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
)
|
||||
|
||||
|
||||
def create_month_selector(
|
||||
id_prefix: str,
|
||||
default_month: int | None = None,
|
||||
label: str = "Select Month",
|
||||
) -> dmc.Select:
|
||||
"""Create a month selector dropdown.
|
||||
|
||||
Args:
|
||||
id_prefix: Prefix for component IDs.
|
||||
default_month: Initial selected month (1-12).
|
||||
label: Label text for the selector.
|
||||
|
||||
Returns:
|
||||
Mantine Select component.
|
||||
"""
|
||||
months = [
|
||||
"January",
|
||||
"February",
|
||||
"March",
|
||||
"April",
|
||||
"May",
|
||||
"June",
|
||||
"July",
|
||||
"August",
|
||||
"September",
|
||||
"October",
|
||||
"November",
|
||||
"December",
|
||||
]
|
||||
options = [{"label": month, "value": str(i + 1)} for i, month in enumerate(months)]
|
||||
|
||||
if default_month is None:
|
||||
default_month = date.today().month
|
||||
|
||||
return dmc.Select(
|
||||
id=f"{id_prefix}-month-selector",
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_month),
|
||||
style={"width": "140px"},
|
||||
)
|
||||
12
portfolio_app/figures/__init__.py
Normal file
12
portfolio_app/figures/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
||||
"""Plotly figure factories for data visualization."""
|
||||
|
||||
from .choropleth import create_choropleth_figure
|
||||
from .summary_cards import create_metric_card_figure
|
||||
from .time_series import create_price_time_series, create_volume_time_series
|
||||
|
||||
__all__ = [
|
||||
"create_choropleth_figure",
|
||||
"create_price_time_series",
|
||||
"create_volume_time_series",
|
||||
"create_metric_card_figure",
|
||||
]
|
||||
152
portfolio_app/figures/choropleth.py
Normal file
152
portfolio_app/figures/choropleth.py
Normal file
@@ -0,0 +1,152 @@
|
||||
"""Choropleth map figure factory for Toronto housing data."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
|
||||
def create_choropleth_figure(
|
||||
geojson: dict[str, Any] | None,
|
||||
data: list[dict[str, Any]],
|
||||
location_key: str,
|
||||
color_column: str,
|
||||
hover_data: list[str] | None = None,
|
||||
color_scale: str = "Blues",
|
||||
title: str | None = None,
|
||||
map_style: str = "carto-positron",
|
||||
center: dict[str, float] | None = None,
|
||||
zoom: float = 9.5,
|
||||
) -> go.Figure:
|
||||
"""Create a choropleth map figure.
|
||||
|
||||
Args:
|
||||
geojson: GeoJSON FeatureCollection for boundaries.
|
||||
data: List of data records with location keys and values.
|
||||
location_key: Column name for location identifier.
|
||||
color_column: Column name for color values.
|
||||
hover_data: Additional columns to show on hover.
|
||||
color_scale: Plotly color scale name.
|
||||
title: Optional chart title.
|
||||
map_style: Mapbox style (carto-positron, open-street-map, etc.).
|
||||
center: Map center coordinates {"lat": float, "lon": float}.
|
||||
zoom: Initial zoom level.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
# Default center to Toronto
|
||||
if center is None:
|
||||
center = {"lat": 43.7, "lon": -79.4}
|
||||
|
||||
# If no geojson provided, create a placeholder map
|
||||
if geojson is None or not data:
|
||||
fig = go.Figure(go.Scattermapbox())
|
||||
fig.update_layout(
|
||||
mapbox={
|
||||
"style": map_style,
|
||||
"center": center,
|
||||
"zoom": zoom,
|
||||
},
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title or "Toronto Housing Map",
|
||||
height=500,
|
||||
)
|
||||
fig.add_annotation(
|
||||
text="No geometry data available. Complete QGIS digitization to enable map.",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "gray"},
|
||||
)
|
||||
return fig
|
||||
|
||||
# Create choropleth with data
|
||||
import pandas as pd
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
fig = px.choropleth_mapbox(
|
||||
df,
|
||||
geojson=geojson,
|
||||
locations=location_key,
|
||||
featureidkey=f"properties.{location_key}",
|
||||
color=color_column,
|
||||
color_continuous_scale=color_scale,
|
||||
hover_data=hover_data,
|
||||
mapbox_style=map_style,
|
||||
center=center,
|
||||
zoom=zoom,
|
||||
opacity=0.7,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title,
|
||||
height=500,
|
||||
coloraxis_colorbar={
|
||||
"title": color_column.replace("_", " ").title(),
|
||||
"thickness": 15,
|
||||
"len": 0.7,
|
||||
},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_district_map(
|
||||
districts_geojson: dict[str, Any] | None,
|
||||
purchase_data: list[dict[str, Any]],
|
||||
metric: str = "avg_price",
|
||||
) -> go.Figure:
|
||||
"""Create choropleth map for TRREB districts.
|
||||
|
||||
Args:
|
||||
districts_geojson: GeoJSON for TRREB district boundaries.
|
||||
purchase_data: Purchase statistics by district.
|
||||
metric: Metric to display (avg_price, sales_count, etc.).
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
hover_columns = ["district_name", "sales_count", "avg_price", "median_price"]
|
||||
|
||||
return create_choropleth_figure(
|
||||
geojson=districts_geojson,
|
||||
data=purchase_data,
|
||||
location_key="district_code",
|
||||
color_column=metric,
|
||||
hover_data=[c for c in hover_columns if c != metric],
|
||||
color_scale="Blues" if "price" in metric else "Greens",
|
||||
title="Toronto Purchase Market by District",
|
||||
)
|
||||
|
||||
|
||||
def create_zone_map(
|
||||
zones_geojson: dict[str, Any] | None,
|
||||
rental_data: list[dict[str, Any]],
|
||||
metric: str = "avg_rent",
|
||||
) -> go.Figure:
|
||||
"""Create choropleth map for CMHC zones.
|
||||
|
||||
Args:
|
||||
zones_geojson: GeoJSON for CMHC zone boundaries.
|
||||
rental_data: Rental statistics by zone.
|
||||
metric: Metric to display (avg_rent, vacancy_rate, etc.).
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
hover_columns = ["zone_name", "avg_rent", "vacancy_rate", "rental_universe"]
|
||||
|
||||
return create_choropleth_figure(
|
||||
geojson=zones_geojson,
|
||||
data=rental_data,
|
||||
location_key="zone_code",
|
||||
color_column=metric,
|
||||
hover_data=[c for c in hover_columns if c != metric],
|
||||
color_scale="Oranges" if "rent" in metric else "Purples",
|
||||
title="Toronto Rental Market by Zone",
|
||||
)
|
||||
106
portfolio_app/figures/summary_cards.py
Normal file
106
portfolio_app/figures/summary_cards.py
Normal file
@@ -0,0 +1,106 @@
|
||||
"""Summary card figure factories for KPI display."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import plotly.graph_objects as go
|
||||
|
||||
|
||||
def create_metric_card_figure(
|
||||
value: float | int | str,
|
||||
title: str,
|
||||
delta: float | None = None,
|
||||
delta_suffix: str = "%",
|
||||
prefix: str = "",
|
||||
suffix: str = "",
|
||||
format_spec: str = ",.0f",
|
||||
positive_is_good: bool = True,
|
||||
) -> go.Figure:
|
||||
"""Create a KPI indicator figure.
|
||||
|
||||
Args:
|
||||
value: The main metric value.
|
||||
title: Card title.
|
||||
delta: Optional change value (for delta indicator).
|
||||
delta_suffix: Suffix for delta value (e.g., '%').
|
||||
prefix: Prefix for main value (e.g., '$').
|
||||
suffix: Suffix for main value.
|
||||
format_spec: Python format specification for the value.
|
||||
positive_is_good: Whether positive delta is good (green) or bad (red).
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
# Determine numeric value for indicator
|
||||
if isinstance(value, int | float):
|
||||
number_value: float | None = float(value)
|
||||
else:
|
||||
number_value = None
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Add indicator trace
|
||||
indicator_config: dict[str, Any] = {
|
||||
"mode": "number",
|
||||
"value": number_value if number_value is not None else 0,
|
||||
"title": {"text": title, "font": {"size": 14}},
|
||||
"number": {
|
||||
"font": {"size": 32},
|
||||
"prefix": prefix,
|
||||
"suffix": suffix,
|
||||
"valueformat": format_spec,
|
||||
},
|
||||
}
|
||||
|
||||
# Add delta if provided
|
||||
if delta is not None:
|
||||
indicator_config["mode"] = "number+delta"
|
||||
indicator_config["delta"] = {
|
||||
"reference": number_value - delta if number_value else 0,
|
||||
"relative": False,
|
||||
"valueformat": ".1f",
|
||||
"suffix": delta_suffix,
|
||||
"increasing": {"color": "green" if positive_is_good else "red"},
|
||||
"decreasing": {"color": "red" if positive_is_good else "green"},
|
||||
}
|
||||
|
||||
fig.add_trace(go.Indicator(**indicator_config))
|
||||
|
||||
fig.update_layout(
|
||||
height=120,
|
||||
margin={"l": 20, "r": 20, "t": 40, "b": 20},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
font={"family": "Inter, sans-serif"},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_summary_metrics(
|
||||
metrics: dict[str, dict[str, Any]],
|
||||
) -> list[go.Figure]:
|
||||
"""Create multiple metric card figures.
|
||||
|
||||
Args:
|
||||
metrics: Dictionary of metric configurations.
|
||||
Key: metric name
|
||||
Value: dict with 'value', 'title', 'delta' (optional), etc.
|
||||
|
||||
Returns:
|
||||
List of Plotly Figure objects.
|
||||
"""
|
||||
figures = []
|
||||
|
||||
for metric_config in metrics.values():
|
||||
fig = create_metric_card_figure(
|
||||
value=metric_config.get("value", 0),
|
||||
title=metric_config.get("title", ""),
|
||||
delta=metric_config.get("delta"),
|
||||
delta_suffix=metric_config.get("delta_suffix", "%"),
|
||||
prefix=metric_config.get("prefix", ""),
|
||||
suffix=metric_config.get("suffix", ""),
|
||||
format_spec=metric_config.get("format_spec", ",.0f"),
|
||||
positive_is_good=metric_config.get("positive_is_good", True),
|
||||
)
|
||||
figures.append(fig)
|
||||
|
||||
return figures
|
||||
233
portfolio_app/figures/time_series.py
Normal file
233
portfolio_app/figures/time_series.py
Normal file
@@ -0,0 +1,233 @@
|
||||
"""Time series figure factories for Toronto housing data."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
|
||||
def create_price_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
price_column: str = "avg_price",
|
||||
group_column: str | None = None,
|
||||
title: str = "Average Price Over Time",
|
||||
show_yoy: bool = True,
|
||||
) -> go.Figure:
|
||||
"""Create a time series chart for price data.
|
||||
|
||||
Args:
|
||||
data: List of records with date and price columns.
|
||||
date_column: Column name for dates.
|
||||
price_column: Column name for price values.
|
||||
group_column: Optional column for grouping (e.g., district_code).
|
||||
title: Chart title.
|
||||
show_yoy: Whether to show year-over-year change annotations.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
)
|
||||
fig.update_layout(title=title, height=350)
|
||||
return fig
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=price_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=price_column,
|
||||
title=title,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
margin={"l": 40, "r": 20, "t": 50, "b": 40},
|
||||
xaxis_title="Date",
|
||||
yaxis_title=price_column.replace("_", " ").title(),
|
||||
yaxis_tickprefix="$",
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_volume_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
volume_column: str = "sales_count",
|
||||
group_column: str | None = None,
|
||||
title: str = "Sales Volume Over Time",
|
||||
chart_type: str = "bar",
|
||||
) -> go.Figure:
|
||||
"""Create a time series chart for volume/count data.
|
||||
|
||||
Args:
|
||||
data: List of records with date and volume columns.
|
||||
date_column: Column name for dates.
|
||||
volume_column: Column name for volume values.
|
||||
group_column: Optional column for grouping.
|
||||
title: Chart title.
|
||||
chart_type: 'bar' or 'line'.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
)
|
||||
fig.update_layout(title=title, height=350)
|
||||
return fig
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
if chart_type == "bar":
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.bar(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.bar(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
df,
|
||||
x=date_column,
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
margin={"l": 40, "r": 20, "t": 50, "b": 40},
|
||||
xaxis_title="Date",
|
||||
yaxis_title=volume_column.replace("_", " ").title(),
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_market_comparison_chart(
|
||||
data: list[dict[str, Any]],
|
||||
date_column: str = "full_date",
|
||||
metrics: list[str] | None = None,
|
||||
title: str = "Market Indicators",
|
||||
) -> go.Figure:
|
||||
"""Create a multi-metric comparison chart.
|
||||
|
||||
Args:
|
||||
data: List of records with date and metric columns.
|
||||
date_column: Column name for dates.
|
||||
metrics: List of metric columns to display.
|
||||
title: Chart title.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object with secondary y-axis.
|
||||
"""
|
||||
import pandas as pd
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
if not data:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
)
|
||||
fig.update_layout(title=title, height=400)
|
||||
return fig
|
||||
|
||||
if metrics is None:
|
||||
metrics = ["avg_price", "sales_count"]
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
df[date_column] = pd.to_datetime(df[date_column])
|
||||
|
||||
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
||||
|
||||
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
|
||||
|
||||
for i, metric in enumerate(metrics[:4]):
|
||||
if metric not in df.columns:
|
||||
continue
|
||||
|
||||
secondary = i > 0
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=df[date_column],
|
||||
y=df[metric],
|
||||
name=metric.replace("_", " ").title(),
|
||||
line={"color": colors[i % len(colors)]},
|
||||
),
|
||||
secondary_y=secondary,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=400,
|
||||
margin={"l": 40, "r": 40, "t": 50, "b": 40},
|
||||
hovermode="x unified",
|
||||
legend={
|
||||
"orientation": "h",
|
||||
"yanchor": "bottom",
|
||||
"y": 1.02,
|
||||
"xanchor": "right",
|
||||
"x": 1,
|
||||
},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -1 +1,282 @@
|
||||
"""Toronto Housing Dashboard page."""
|
||||
|
||||
import dash
|
||||
import dash_mantine_components as dmc
|
||||
from dash import dcc, html
|
||||
|
||||
from portfolio_app.components import (
|
||||
create_map_controls,
|
||||
create_metric_cards_row,
|
||||
create_time_slider,
|
||||
create_year_selector,
|
||||
)
|
||||
|
||||
dash.register_page(__name__, path="/toronto", name="Toronto Housing")
|
||||
|
||||
# Metric options for the purchase market
|
||||
PURCHASE_METRIC_OPTIONS = [
|
||||
{"label": "Average Price", "value": "avg_price"},
|
||||
{"label": "Median Price", "value": "median_price"},
|
||||
{"label": "Sales Volume", "value": "sales_count"},
|
||||
{"label": "Days on Market", "value": "avg_dom"},
|
||||
]
|
||||
|
||||
# Metric options for the rental market
|
||||
RENTAL_METRIC_OPTIONS = [
|
||||
{"label": "Average Rent", "value": "avg_rent"},
|
||||
{"label": "Vacancy Rate", "value": "vacancy_rate"},
|
||||
{"label": "Rental Universe", "value": "rental_universe"},
|
||||
]
|
||||
|
||||
# Sample metrics for KPI cards (will be populated by callbacks)
|
||||
SAMPLE_METRICS = [
|
||||
{
|
||||
"title": "Avg. Price",
|
||||
"value": 1125000,
|
||||
"delta": 2.3,
|
||||
"prefix": "$",
|
||||
"format_spec": ",.0f",
|
||||
},
|
||||
{
|
||||
"title": "Sales Volume",
|
||||
"value": 4850,
|
||||
"delta": -5.1,
|
||||
"format_spec": ",",
|
||||
},
|
||||
{
|
||||
"title": "Avg. DOM",
|
||||
"value": 18,
|
||||
"delta": 3,
|
||||
"suffix": " days",
|
||||
"positive_is_good": False,
|
||||
},
|
||||
{
|
||||
"title": "Avg. Rent",
|
||||
"value": 2450,
|
||||
"delta": 4.2,
|
||||
"prefix": "$",
|
||||
"format_spec": ",.0f",
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def create_header() -> dmc.Group:
|
||||
"""Create the dashboard header with title and controls."""
|
||||
return dmc.Group(
|
||||
[
|
||||
dmc.Stack(
|
||||
[
|
||||
dmc.Title("Toronto Housing Dashboard", order=1),
|
||||
dmc.Text(
|
||||
"Real estate market analysis for the Greater Toronto Area",
|
||||
c="dimmed",
|
||||
),
|
||||
],
|
||||
gap="xs",
|
||||
),
|
||||
dmc.Group(
|
||||
[
|
||||
create_year_selector(
|
||||
id_prefix="toronto",
|
||||
min_year=2020,
|
||||
default_year=2024,
|
||||
label="Year",
|
||||
),
|
||||
],
|
||||
gap="md",
|
||||
),
|
||||
],
|
||||
justify="space-between",
|
||||
align="flex-start",
|
||||
)
|
||||
|
||||
|
||||
def create_kpi_section() -> dmc.Box:
|
||||
"""Create the KPI metrics row."""
|
||||
return dmc.Box(
|
||||
children=[
|
||||
dmc.Title("Key Metrics", order=3, size="h4", mb="sm"),
|
||||
html.Div(
|
||||
id="toronto-kpi-cards",
|
||||
children=[
|
||||
create_metric_cards_row(SAMPLE_METRICS, id_prefix="toronto-kpi")
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def create_purchase_map_section() -> dmc.Grid:
|
||||
"""Create the purchase market choropleth section."""
|
||||
return dmc.Grid(
|
||||
[
|
||||
dmc.GridCol(
|
||||
create_map_controls(
|
||||
id_prefix="purchase-map",
|
||||
metric_options=PURCHASE_METRIC_OPTIONS,
|
||||
default_metric="avg_price",
|
||||
),
|
||||
span={"base": 12, "md": 3},
|
||||
),
|
||||
dmc.GridCol(
|
||||
dmc.Paper(
|
||||
children=[
|
||||
dcc.Graph(
|
||||
id="purchase-choropleth",
|
||||
config={"scrollZoom": True},
|
||||
style={"height": "500px"},
|
||||
),
|
||||
],
|
||||
p="xs",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
),
|
||||
span={"base": 12, "md": 9},
|
||||
),
|
||||
],
|
||||
gutter="md",
|
||||
)
|
||||
|
||||
|
||||
def create_rental_map_section() -> dmc.Grid:
|
||||
"""Create the rental market choropleth section."""
|
||||
return dmc.Grid(
|
||||
[
|
||||
dmc.GridCol(
|
||||
create_map_controls(
|
||||
id_prefix="rental-map",
|
||||
metric_options=RENTAL_METRIC_OPTIONS,
|
||||
default_metric="avg_rent",
|
||||
),
|
||||
span={"base": 12, "md": 3},
|
||||
),
|
||||
dmc.GridCol(
|
||||
dmc.Paper(
|
||||
children=[
|
||||
dcc.Graph(
|
||||
id="rental-choropleth",
|
||||
config={"scrollZoom": True},
|
||||
style={"height": "500px"},
|
||||
),
|
||||
],
|
||||
p="xs",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
),
|
||||
span={"base": 12, "md": 9},
|
||||
),
|
||||
],
|
||||
gutter="md",
|
||||
)
|
||||
|
||||
|
||||
def create_time_series_section() -> dmc.Grid:
|
||||
"""Create the time series charts section."""
|
||||
return dmc.Grid(
|
||||
[
|
||||
dmc.GridCol(
|
||||
dmc.Paper(
|
||||
children=[
|
||||
dmc.Title("Price Trends", order=4, size="h5", mb="sm"),
|
||||
dcc.Graph(
|
||||
id="price-time-series",
|
||||
config={"displayModeBar": False},
|
||||
style={"height": "350px"},
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
),
|
||||
span={"base": 12, "md": 6},
|
||||
),
|
||||
dmc.GridCol(
|
||||
dmc.Paper(
|
||||
children=[
|
||||
dmc.Title("Sales Volume", order=4, size="h5", mb="sm"),
|
||||
dcc.Graph(
|
||||
id="volume-time-series",
|
||||
config={"displayModeBar": False},
|
||||
style={"height": "350px"},
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
),
|
||||
span={"base": 12, "md": 6},
|
||||
),
|
||||
],
|
||||
gutter="md",
|
||||
)
|
||||
|
||||
|
||||
def create_market_comparison_section() -> dmc.Paper:
|
||||
"""Create the market comparison chart section."""
|
||||
return dmc.Paper(
|
||||
children=[
|
||||
dmc.Group(
|
||||
[
|
||||
dmc.Title("Market Indicators", order=4, size="h5"),
|
||||
create_time_slider(
|
||||
id_prefix="market-comparison",
|
||||
min_year=2020,
|
||||
label="",
|
||||
),
|
||||
],
|
||||
justify="space-between",
|
||||
align="center",
|
||||
mb="md",
|
||||
),
|
||||
dcc.Graph(
|
||||
id="market-comparison-chart",
|
||||
config={"displayModeBar": False},
|
||||
style={"height": "400px"},
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
radius="sm",
|
||||
withBorder=True,
|
||||
)
|
||||
|
||||
|
||||
def create_data_notice() -> dmc.Alert:
|
||||
"""Create a notice about data availability."""
|
||||
return dmc.Alert(
|
||||
children=[
|
||||
dmc.Text(
|
||||
"This dashboard uses TRREB and CMHC data. "
|
||||
"Geographic boundaries require QGIS digitization to enable choropleth maps. "
|
||||
"Sample data is shown below.",
|
||||
size="sm",
|
||||
),
|
||||
],
|
||||
title="Data Notice",
|
||||
color="blue",
|
||||
variant="light",
|
||||
)
|
||||
|
||||
|
||||
# Register callbacks
|
||||
from portfolio_app.pages.toronto import callbacks # noqa: E402, F401
|
||||
|
||||
layout = dmc.Container(
|
||||
dmc.Stack(
|
||||
[
|
||||
create_header(),
|
||||
create_data_notice(),
|
||||
create_kpi_section(),
|
||||
dmc.Divider(my="md", label="Purchase Market", labelPosition="center"),
|
||||
create_purchase_map_section(),
|
||||
dmc.Divider(my="md", label="Rental Market", labelPosition="center"),
|
||||
create_rental_map_section(),
|
||||
dmc.Divider(my="md", label="Trends", labelPosition="center"),
|
||||
create_time_series_section(),
|
||||
create_market_comparison_section(),
|
||||
dmc.Space(h=40),
|
||||
],
|
||||
gap="lg",
|
||||
),
|
||||
size="xl",
|
||||
py="xl",
|
||||
)
|
||||
|
||||
@@ -1 +1,172 @@
|
||||
"""Toronto dashboard callbacks."""
|
||||
|
||||
import plotly.graph_objects as go
|
||||
from dash import Input, Output, callback
|
||||
|
||||
from portfolio_app.figures.choropleth import create_choropleth_figure
|
||||
from portfolio_app.figures.time_series import (
|
||||
create_market_comparison_chart,
|
||||
create_price_time_series,
|
||||
create_volume_time_series,
|
||||
)
|
||||
|
||||
# Sample data for demonstration (will be replaced with database queries)
|
||||
SAMPLE_PURCHASE_DATA = [
|
||||
{
|
||||
"district_code": "C01",
|
||||
"district_name": "Downtown Toronto",
|
||||
"avg_price": 1250000,
|
||||
"median_price": 1100000,
|
||||
"sales_count": 450,
|
||||
"avg_dom": 15,
|
||||
},
|
||||
{
|
||||
"district_code": "C02",
|
||||
"district_name": "Annex/Yorkville",
|
||||
"avg_price": 1850000,
|
||||
"median_price": 1650000,
|
||||
"sales_count": 280,
|
||||
"avg_dom": 12,
|
||||
},
|
||||
{
|
||||
"district_code": "E01",
|
||||
"district_name": "East York",
|
||||
"avg_price": 980000,
|
||||
"median_price": 920000,
|
||||
"sales_count": 320,
|
||||
"avg_dom": 18,
|
||||
},
|
||||
{
|
||||
"district_code": "W01",
|
||||
"district_name": "Etobicoke South",
|
||||
"avg_price": 875000,
|
||||
"median_price": 825000,
|
||||
"sales_count": 410,
|
||||
"avg_dom": 20,
|
||||
},
|
||||
]
|
||||
|
||||
SAMPLE_RENTAL_DATA = [
|
||||
{
|
||||
"zone_code": "Z01",
|
||||
"zone_name": "Toronto Core",
|
||||
"avg_rent": 2650,
|
||||
"vacancy_rate": 2.1,
|
||||
"rental_universe": 125000,
|
||||
},
|
||||
{
|
||||
"zone_code": "Z02",
|
||||
"zone_name": "North York",
|
||||
"avg_rent": 2200,
|
||||
"vacancy_rate": 2.8,
|
||||
"rental_universe": 85000,
|
||||
},
|
||||
{
|
||||
"zone_code": "Z03",
|
||||
"zone_name": "Scarborough",
|
||||
"avg_rent": 1950,
|
||||
"vacancy_rate": 3.2,
|
||||
"rental_universe": 72000,
|
||||
},
|
||||
]
|
||||
|
||||
SAMPLE_TIME_SERIES_DATA = [
|
||||
{"full_date": "2023-01-01", "avg_price": 1050000, "sales_count": 3200},
|
||||
{"full_date": "2023-02-01", "avg_price": 1080000, "sales_count": 3400},
|
||||
{"full_date": "2023-03-01", "avg_price": 1120000, "sales_count": 4100},
|
||||
{"full_date": "2023-04-01", "avg_price": 1150000, "sales_count": 4500},
|
||||
{"full_date": "2023-05-01", "avg_price": 1180000, "sales_count": 4800},
|
||||
{"full_date": "2023-06-01", "avg_price": 1160000, "sales_count": 4600},
|
||||
{"full_date": "2023-07-01", "avg_price": 1140000, "sales_count": 4200},
|
||||
{"full_date": "2023-08-01", "avg_price": 1130000, "sales_count": 4000},
|
||||
{"full_date": "2023-09-01", "avg_price": 1125000, "sales_count": 3800},
|
||||
{"full_date": "2023-10-01", "avg_price": 1110000, "sales_count": 3600},
|
||||
{"full_date": "2023-11-01", "avg_price": 1100000, "sales_count": 3400},
|
||||
{"full_date": "2023-12-01", "avg_price": 1090000, "sales_count": 3000},
|
||||
{"full_date": "2024-01-01", "avg_price": 1095000, "sales_count": 3100},
|
||||
{"full_date": "2024-02-01", "avg_price": 1105000, "sales_count": 3300},
|
||||
{"full_date": "2024-03-01", "avg_price": 1125000, "sales_count": 4000},
|
||||
{"full_date": "2024-04-01", "avg_price": 1140000, "sales_count": 4400},
|
||||
{"full_date": "2024-05-01", "avg_price": 1155000, "sales_count": 4700},
|
||||
{"full_date": "2024-06-01", "avg_price": 1145000, "sales_count": 4500},
|
||||
]
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("purchase-choropleth", "figure"),
|
||||
Input("purchase-map-metric-selector", "value"),
|
||||
Input("toronto-year-selector", "value"),
|
||||
)
|
||||
def update_purchase_choropleth(metric: str, year: str) -> go.Figure:
|
||||
"""Update the purchase market choropleth map."""
|
||||
# In production, this would query the database
|
||||
# For now, return a placeholder map without geojson
|
||||
return create_choropleth_figure(
|
||||
geojson=None, # Will be populated when QGIS digitization is complete
|
||||
data=SAMPLE_PURCHASE_DATA,
|
||||
location_key="district_code",
|
||||
color_column=metric or "avg_price",
|
||||
hover_data=["district_name", "sales_count"],
|
||||
title=f"Purchase Market - {metric.replace('_', ' ').title() if metric else 'Average Price'}",
|
||||
)
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("rental-choropleth", "figure"),
|
||||
Input("rental-map-metric-selector", "value"),
|
||||
Input("toronto-year-selector", "value"),
|
||||
)
|
||||
def update_rental_choropleth(metric: str, year: str) -> go.Figure:
|
||||
"""Update the rental market choropleth map."""
|
||||
return create_choropleth_figure(
|
||||
geojson=None, # Will be populated when QGIS digitization is complete
|
||||
data=SAMPLE_RENTAL_DATA,
|
||||
location_key="zone_code",
|
||||
color_column=metric or "avg_rent",
|
||||
hover_data=["zone_name", "vacancy_rate"],
|
||||
color_scale="Oranges",
|
||||
title=f"Rental Market - {metric.replace('_', ' ').title() if metric else 'Average Rent'}",
|
||||
)
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("price-time-series", "figure"),
|
||||
Input("toronto-year-selector", "value"),
|
||||
)
|
||||
def update_price_time_series(year: str) -> go.Figure:
|
||||
"""Update the price time series chart."""
|
||||
return create_price_time_series(
|
||||
data=SAMPLE_TIME_SERIES_DATA,
|
||||
date_column="full_date",
|
||||
price_column="avg_price",
|
||||
title="Average Price Trend",
|
||||
)
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("volume-time-series", "figure"),
|
||||
Input("toronto-year-selector", "value"),
|
||||
)
|
||||
def update_volume_time_series(year: str) -> go.Figure:
|
||||
"""Update the volume time series chart."""
|
||||
return create_volume_time_series(
|
||||
data=SAMPLE_TIME_SERIES_DATA,
|
||||
date_column="full_date",
|
||||
volume_column="sales_count",
|
||||
title="Sales Volume Trend",
|
||||
chart_type="bar",
|
||||
)
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("market-comparison-chart", "figure"),
|
||||
Input("market-comparison-time-slider", "value"),
|
||||
)
|
||||
def update_market_comparison(time_range: list[int]) -> go.Figure:
|
||||
"""Update the market comparison chart."""
|
||||
return create_market_comparison_chart(
|
||||
data=SAMPLE_TIME_SERIES_DATA,
|
||||
date_column="full_date",
|
||||
metrics=["avg_price", "sales_count"],
|
||||
title="Market Indicators Comparison",
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user