development #95
@@ -18,7 +18,7 @@ Working context for Claude Code on the Analytics Portfolio project.
|
||||
|
||||
```bash
|
||||
make setup # Install deps, create .env, init pre-commit
|
||||
make docker-up # Start PostgreSQL + PostGIS
|
||||
make docker-up # Start PostgreSQL + PostGIS (auto-detects x86/ARM)
|
||||
make docker-down # Stop containers
|
||||
make db-init # Initialize database schema
|
||||
make run # Start Dash dev server
|
||||
@@ -193,6 +193,7 @@ notebooks/ # Data documentation (Phase 6)
|
||||
- SQLAlchemy 2.0 + Pydantic 2.0 only (never mix 1.x APIs)
|
||||
- PostGIS extension required in database
|
||||
- Docker Compose V2 format (no `version` field)
|
||||
- **Multi-architecture support**: `make docker-up` auto-detects CPU architecture and uses the appropriate PostGIS image (x86_64: `postgis/postgis`, ARM64: `imresamu/postgis`)
|
||||
|
||||
---
|
||||
|
||||
|
||||
12
Makefile
12
Makefile
@@ -8,6 +8,17 @@ PYTHON := python3
|
||||
PIP := pip
|
||||
DOCKER_COMPOSE := docker compose
|
||||
|
||||
# Architecture detection for Docker images
|
||||
ARCH := $(shell uname -m)
|
||||
ifeq ($(ARCH),aarch64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else ifeq ($(ARCH),arm64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else
|
||||
POSTGIS_IMAGE := postgis/postgis:16-3.4
|
||||
endif
|
||||
export POSTGIS_IMAGE
|
||||
|
||||
# Colors for output
|
||||
BLUE := \033[0;34m
|
||||
GREEN := \033[0;32m
|
||||
@@ -39,6 +50,7 @@ setup: ## Install dependencies, create .env, init pre-commit
|
||||
|
||||
docker-up: ## Start PostgreSQL + PostGIS containers
|
||||
@echo "$(GREEN)Starting database containers...$(NC)"
|
||||
@echo "$(BLUE)Architecture: $(ARCH) -> Using image: $(POSTGIS_IMAGE)$(NC)"
|
||||
$(DOCKER_COMPOSE) up -d
|
||||
@echo "$(GREEN)Waiting for database to be ready...$(NC)"
|
||||
@sleep 3
|
||||
|
||||
60
dbt/models/intermediate/int_census__toronto_cma.sql
Normal file
60
dbt/models/intermediate/int_census__toronto_cma.sql
Normal file
@@ -0,0 +1,60 @@
|
||||
-- Intermediate: Toronto CMA census statistics by year
|
||||
-- Provides city-wide averages for metrics not available at neighbourhood level
|
||||
-- Used when neighbourhood-level data is unavailable (e.g., median household income)
|
||||
-- Grain: One row per year
|
||||
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
-- Census data is only available for 2016 and 2021
|
||||
-- Map each analysis year to the appropriate census year
|
||||
year_to_census as (
|
||||
select
|
||||
y.year,
|
||||
case
|
||||
when y.year <= 2018 then 2016
|
||||
else 2021
|
||||
end as census_year
|
||||
from years y
|
||||
),
|
||||
|
||||
-- Toronto CMA median household income from Statistics Canada
|
||||
-- Source: Census Profile Table 98-316-X2021001
|
||||
-- 2016: $65,829 (from Census Profile)
|
||||
-- 2021: $84,000 (from Census Profile)
|
||||
cma_income as (
|
||||
select 2016 as census_year, 65829 as median_household_income union all
|
||||
select 2021 as census_year, 84000 as median_household_income
|
||||
),
|
||||
|
||||
-- City-wide aggregates from loaded neighbourhood data
|
||||
city_aggregates as (
|
||||
select
|
||||
census_year,
|
||||
sum(population) as total_population,
|
||||
avg(population_density) as avg_population_density,
|
||||
avg(unemployment_rate) as avg_unemployment_rate
|
||||
from census
|
||||
where population is not null
|
||||
group by census_year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
y.year,
|
||||
y.census_year,
|
||||
ci.median_household_income,
|
||||
ca.total_population,
|
||||
ca.avg_population_density,
|
||||
ca.avg_unemployment_rate
|
||||
from year_to_census y
|
||||
left join cma_income ci on y.census_year = ci.census_year
|
||||
left join city_aggregates ca on y.census_year = ca.census_year
|
||||
)
|
||||
|
||||
select * from final
|
||||
@@ -34,7 +34,7 @@ amenity_scores as (
|
||||
n.population,
|
||||
n.land_area_sqkm,
|
||||
|
||||
a.year,
|
||||
coalesce(a.year, 2021) as year,
|
||||
|
||||
-- Raw counts
|
||||
a.parks_count,
|
||||
|
||||
@@ -64,15 +64,17 @@ crime_summary as (
|
||||
w.robbery_count,
|
||||
w.theft_over_count,
|
||||
w.homicide_count,
|
||||
w.avg_rate_per_100k,
|
||||
w.yoy_change_pct,
|
||||
|
||||
-- Crime rate per 100K population
|
||||
case
|
||||
when n.population > 0
|
||||
then round(w.total_incidents::numeric / n.population * 100000, 2)
|
||||
else null
|
||||
end as crime_rate_per_100k
|
||||
-- Crime rate per 100K population (use source data avg, or calculate if population available)
|
||||
coalesce(
|
||||
w.avg_rate_per_100k,
|
||||
case
|
||||
when n.population > 0
|
||||
then round(w.total_incidents::numeric / n.population * 100000, 2)
|
||||
else null
|
||||
end
|
||||
) as crime_rate_per_100k
|
||||
|
||||
from neighbourhoods n
|
||||
inner join with_yoy w on n.neighbourhood_id = w.neighbourhood_id
|
||||
|
||||
@@ -17,7 +17,8 @@ demographics as (
|
||||
n.geometry,
|
||||
n.land_area_sqkm,
|
||||
|
||||
c.census_year,
|
||||
-- Use census_year from census data, or fall back to dim_neighbourhood's year
|
||||
coalesce(c.census_year, n.census_year, 2021) as census_year,
|
||||
c.population,
|
||||
c.population_density,
|
||||
c.median_household_income,
|
||||
|
||||
@@ -20,7 +20,7 @@ housing as (
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
|
||||
coalesce(r.year, c.census_year) as year,
|
||||
coalesce(r.year, c.census_year, 2021) as year,
|
||||
|
||||
-- Census housing metrics
|
||||
c.pct_owner_occupied,
|
||||
|
||||
25
dbt/models/intermediate/int_rentals__toronto_cma.sql
Normal file
25
dbt/models/intermediate/int_rentals__toronto_cma.sql
Normal file
@@ -0,0 +1,25 @@
|
||||
-- Intermediate: Toronto CMA rental metrics by year
|
||||
-- Aggregates rental data to city-wide averages by year
|
||||
-- Source: StatCan CMHC data at CMA level
|
||||
-- Grain: One row per year
|
||||
|
||||
with rentals as (
|
||||
select * from {{ ref('stg_cmhc__rentals') }}
|
||||
),
|
||||
|
||||
-- Pivot bedroom types to columns
|
||||
yearly_rentals as (
|
||||
select
|
||||
year,
|
||||
max(case when bedroom_type = 'bachelor' then avg_rent end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = '1bed' then avg_rent end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = '3bed' then avg_rent end) as avg_rent_3bed,
|
||||
-- Use 2-bedroom as standard reference
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_standard,
|
||||
max(vacancy_rate) as vacancy_rate
|
||||
from rentals
|
||||
group by year
|
||||
)
|
||||
|
||||
select * from yearly_rentals
|
||||
11
dbt/models/intermediate/int_year_spine.sql
Normal file
11
dbt/models/intermediate/int_year_spine.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
-- Intermediate: Year spine for analysis
|
||||
-- Creates a row for each year from 2014-2025
|
||||
-- Used to drive time-series analysis across all data sources
|
||||
|
||||
with years as (
|
||||
-- Generate years from available data sources
|
||||
-- Crime data: 2014-2024, Rentals: 2019-2025
|
||||
select generate_series(2014, 2025) as year
|
||||
)
|
||||
|
||||
select year from years
|
||||
@@ -1,79 +1,119 @@
|
||||
-- Mart: Neighbourhood Overview with Composite Livability Score
|
||||
-- Dashboard Tab: Overview
|
||||
-- Grain: One row per neighbourhood per year
|
||||
-- Time spine: Years 2014-2025 (driven by crime/rental data availability)
|
||||
|
||||
with demographics as (
|
||||
select * from {{ ref('int_neighbourhood__demographics') }}
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
housing as (
|
||||
select * from {{ ref('int_neighbourhood__housing') }}
|
||||
neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
-- Create base: all neighbourhoods × all years
|
||||
neighbourhood_years as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
y.year
|
||||
from neighbourhoods n
|
||||
cross join years y
|
||||
),
|
||||
|
||||
-- Census data (available for 2016, 2021)
|
||||
-- For each year, use the most recent census data available
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
census_mapped as (
|
||||
select
|
||||
ny.neighbourhood_id,
|
||||
ny.year,
|
||||
c.population,
|
||||
c.unemployment_rate,
|
||||
c.pct_bachelors_or_higher as education_bachelors_pct
|
||||
from neighbourhood_years ny
|
||||
left join census c on ny.neighbourhood_id = c.neighbourhood_id
|
||||
-- Use census year <= analysis year, prefer most recent
|
||||
and c.census_year = (
|
||||
select max(c2.census_year)
|
||||
from {{ ref('stg_toronto__census') }} c2
|
||||
where c2.neighbourhood_id = ny.neighbourhood_id
|
||||
and c2.census_year <= ny.year
|
||||
)
|
||||
),
|
||||
|
||||
-- CMA-level census data (for income - not available at neighbourhood level)
|
||||
cma_census as (
|
||||
select * from {{ ref('int_census__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Crime data (2014-2024)
|
||||
crime as (
|
||||
select * from {{ ref('int_neighbourhood__crime_summary') }}
|
||||
),
|
||||
|
||||
amenities as (
|
||||
select * from {{ ref('int_neighbourhood__amenity_scores') }}
|
||||
-- Rentals (2019-2025) - CMA level applied to all neighbourhoods
|
||||
rentals as (
|
||||
select * from {{ ref('int_rentals__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Compute percentile ranks for scoring components
|
||||
percentiles as (
|
||||
-- Compute scores
|
||||
scored as (
|
||||
select
|
||||
d.neighbourhood_id,
|
||||
d.neighbourhood_name,
|
||||
d.geometry,
|
||||
d.census_year as year,
|
||||
d.population,
|
||||
d.median_household_income,
|
||||
ny.neighbourhood_id,
|
||||
ny.neighbourhood_name,
|
||||
ny.geometry,
|
||||
ny.year,
|
||||
cm.population,
|
||||
-- Use CMA-level income (neighbourhood-level not available in Toronto Open Data)
|
||||
cma.median_household_income,
|
||||
|
||||
-- Safety score: inverse of crime rate (higher = safer)
|
||||
case
|
||||
when c.crime_rate_per_100k is not null
|
||||
when cr.crime_rate_per_100k is not null
|
||||
then 100 - percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by c.crime_rate_per_100k
|
||||
partition by ny.year
|
||||
order by cr.crime_rate_per_100k
|
||||
) * 100
|
||||
else null
|
||||
end as safety_score,
|
||||
|
||||
-- Affordability score: inverse of rent-to-income ratio
|
||||
-- Using CMA-level income since neighbourhood-level not available
|
||||
case
|
||||
when h.rent_to_income_pct is not null
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then 100 - percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by h.rent_to_income_pct
|
||||
partition by ny.year
|
||||
order by (r.avg_rent_standard * 12 / cma.median_household_income)
|
||||
) * 100
|
||||
else null
|
||||
end as affordability_score,
|
||||
|
||||
-- Amenity score: based on amenities per capita
|
||||
-- Raw metrics
|
||||
cr.crime_rate_per_100k,
|
||||
case
|
||||
when a.total_amenities_per_1000 is not null
|
||||
then percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by a.total_amenities_per_1000
|
||||
) * 100
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then round((r.avg_rent_standard * 12 / cma.median_household_income) * 100, 2)
|
||||
else null
|
||||
end as amenity_score,
|
||||
end as rent_to_income_pct,
|
||||
r.avg_rent_standard as avg_rent_2bed,
|
||||
r.vacancy_rate
|
||||
|
||||
-- Raw metrics for reference
|
||||
c.crime_rate_per_100k,
|
||||
h.rent_to_income_pct,
|
||||
h.avg_rent_2bed,
|
||||
a.total_amenities_per_1000
|
||||
|
||||
from demographics d
|
||||
left join housing h
|
||||
on d.neighbourhood_id = h.neighbourhood_id
|
||||
and d.census_year = h.year
|
||||
left join crime c
|
||||
on d.neighbourhood_id = c.neighbourhood_id
|
||||
and d.census_year = c.year
|
||||
left join amenities a
|
||||
on d.neighbourhood_id = a.neighbourhood_id
|
||||
and d.census_year = a.year
|
||||
from neighbourhood_years ny
|
||||
left join census_mapped cm
|
||||
on ny.neighbourhood_id = cm.neighbourhood_id
|
||||
and ny.year = cm.year
|
||||
left join cma_census cma
|
||||
on ny.year = cma.year
|
||||
left join crime cr
|
||||
on ny.neighbourhood_id = cr.neighbourhood_id
|
||||
and ny.year = cr.year
|
||||
left join rentals r
|
||||
on ny.year = r.year
|
||||
),
|
||||
|
||||
final as (
|
||||
@@ -88,13 +128,14 @@ final as (
|
||||
-- Component scores (0-100)
|
||||
round(safety_score::numeric, 1) as safety_score,
|
||||
round(affordability_score::numeric, 1) as affordability_score,
|
||||
round(amenity_score::numeric, 1) as amenity_score,
|
||||
-- Amenity score not available at this level, use placeholder
|
||||
50.0 as amenity_score,
|
||||
|
||||
-- Composite livability score: safety (30%), affordability (40%), amenities (30%)
|
||||
-- Composite livability score: safety (40%), affordability (40%), amenities (20%)
|
||||
round(
|
||||
(coalesce(safety_score, 50) * 0.30 +
|
||||
(coalesce(safety_score, 50) * 0.40 +
|
||||
coalesce(affordability_score, 50) * 0.40 +
|
||||
coalesce(amenity_score, 50) * 0.30)::numeric,
|
||||
50 * 0.20)::numeric,
|
||||
1
|
||||
) as livability_score,
|
||||
|
||||
@@ -102,9 +143,10 @@ final as (
|
||||
crime_rate_per_100k,
|
||||
rent_to_income_pct,
|
||||
avg_rent_2bed,
|
||||
total_amenities_per_1000
|
||||
vacancy_rate,
|
||||
null::numeric as total_amenities_per_1000
|
||||
|
||||
from percentiles
|
||||
from scored
|
||||
)
|
||||
|
||||
select * from final
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
-- Staged CMHC rental market survey data
|
||||
-- Source: fact_rentals table loaded from CMHC CSV exports
|
||||
-- Source: fact_rentals table loaded from CMHC/StatCan
|
||||
-- Grain: One row per zone per bedroom type per survey year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_rentals') }}
|
||||
select
|
||||
f.*,
|
||||
t.year as survey_year
|
||||
from {{ source('toronto_housing', 'fact_rentals') }} f
|
||||
join {{ source('toronto_housing', 'dim_time') }} t on f.date_key = t.date_key
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -11,6 +15,7 @@ staged as (
|
||||
id as rental_id,
|
||||
date_key,
|
||||
zone_key,
|
||||
survey_year as year,
|
||||
bedroom_type,
|
||||
universe as rental_universe,
|
||||
avg_rent,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
services:
|
||||
db:
|
||||
image: postgis/postgis:16-3.4
|
||||
image: ${POSTGIS_IMAGE:-postgis/postgis:16-3.4}
|
||||
container_name: portfolio-db
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Chart callbacks for supporting visualizations."""
|
||||
# mypy: disable-error-code="misc,no-untyped-def,arg-type"
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
from dash import Input, Output, callback
|
||||
|
||||
@@ -43,7 +44,24 @@ def update_overview_scatter(year: str) -> go.Figure:
|
||||
# Compute safety score (inverse of crime rate)
|
||||
if "total_crime_rate" in merged.columns:
|
||||
max_crime = merged["total_crime_rate"].max()
|
||||
merged["safety_score"] = 100 - (merged["total_crime_rate"] / max_crime * 100)
|
||||
if max_crime and max_crime > 0:
|
||||
merged["safety_score"] = 100 - (
|
||||
merged["total_crime_rate"] / max_crime * 100
|
||||
)
|
||||
else:
|
||||
merged["safety_score"] = 50 # Default if no crime data
|
||||
|
||||
# Fill NULL population with median or default value for sizing
|
||||
if "population" in merged.columns:
|
||||
median_pop = merged["population"].median()
|
||||
default_pop = median_pop if pd.notna(median_pop) else 10000
|
||||
merged["population"] = merged["population"].fillna(default_pop)
|
||||
|
||||
# Filter rows with required data for scatter plot
|
||||
merged = merged.dropna(subset=["median_household_income", "safety_score"])
|
||||
|
||||
if merged.empty:
|
||||
return _empty_chart("Insufficient data for scatter plot")
|
||||
|
||||
data = merged.to_dict("records")
|
||||
|
||||
@@ -76,12 +94,13 @@ def update_housing_trend(year: str, neighbourhood_id: int | None) -> go.Figure:
|
||||
return _empty_chart("No trend data available")
|
||||
|
||||
# Placeholder for trend data - would be historical
|
||||
base_rent = averages.get("avg_rent_2bed") or 2000
|
||||
data = [
|
||||
{"year": "2019", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.85},
|
||||
{"year": "2020", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.88},
|
||||
{"year": "2021", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.92},
|
||||
{"year": "2022", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.96},
|
||||
{"year": "2023", "avg_rent": averages.get("avg_rent_2bed", 2000)},
|
||||
{"year": "2019", "avg_rent": base_rent * 0.85},
|
||||
{"year": "2020", "avg_rent": base_rent * 0.88},
|
||||
{"year": "2021", "avg_rent": base_rent * 0.92},
|
||||
{"year": "2022", "avg_rent": base_rent * 0.96},
|
||||
{"year": "2023", "avg_rent": base_rent},
|
||||
]
|
||||
|
||||
fig = go.Figure()
|
||||
@@ -330,10 +349,11 @@ def update_amenities_radar(year: str, neighbourhood_id: int | None) -> go.Figure
|
||||
# Get city averages
|
||||
averages = get_city_averages(year_int)
|
||||
|
||||
amenity_score = averages.get("avg_amenity_score") or 50
|
||||
city_data = {
|
||||
"parks_per_1000": averages.get("avg_amenity_score", 50) / 100 * 10,
|
||||
"schools_per_1000": averages.get("avg_amenity_score", 50) / 100 * 5,
|
||||
"childcare_per_1000": averages.get("avg_amenity_score", 50) / 100 * 3,
|
||||
"parks_per_1000": amenity_score / 100 * 10,
|
||||
"schools_per_1000": amenity_score / 100 * 5,
|
||||
"childcare_per_1000": amenity_score / 100 * 3,
|
||||
"transit_access": 70,
|
||||
}
|
||||
|
||||
|
||||
@@ -3,7 +3,12 @@
|
||||
from .amenities import load_amenities, load_amenity_counts
|
||||
from .base import bulk_insert, get_session, upsert_by_key
|
||||
from .census import load_census_data
|
||||
from .cmhc import load_cmhc_record, load_cmhc_rentals
|
||||
from .cmhc import (
|
||||
ensure_toronto_cma_zone,
|
||||
load_cmhc_record,
|
||||
load_cmhc_rentals,
|
||||
load_statcan_cmhc_data,
|
||||
)
|
||||
from .cmhc_crosswalk import (
|
||||
build_cmhc_neighbourhood_crosswalk,
|
||||
disaggregate_zone_value,
|
||||
@@ -32,6 +37,8 @@ __all__ = [
|
||||
# Fact loaders
|
||||
"load_cmhc_rentals",
|
||||
"load_cmhc_record",
|
||||
"load_statcan_cmhc_data",
|
||||
"ensure_toronto_cma_zone",
|
||||
# Phase 3 loaders
|
||||
"load_census_data",
|
||||
"load_crime_data",
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
"""Loader for CMHC rental data into fact_rentals."""
|
||||
|
||||
import logging
|
||||
from datetime import date
|
||||
from typing import Any
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from portfolio_app.toronto.models import DimCMHCZone, DimTime, FactRentals
|
||||
@@ -8,6 +12,12 @@ from portfolio_app.toronto.schemas import CMHCAnnualSurvey, CMHCRentalRecord
|
||||
from .base import get_session, upsert_by_key
|
||||
from .dimensions import generate_date_key
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Toronto CMA zone code for CMA-level data
|
||||
TORONTO_CMA_ZONE_CODE = "TORCMA"
|
||||
TORONTO_CMA_ZONE_NAME = "Toronto CMA"
|
||||
|
||||
|
||||
def load_cmhc_rentals(
|
||||
survey: CMHCAnnualSurvey,
|
||||
@@ -135,3 +145,117 @@ def load_cmhc_record(
|
||||
return _load(session)
|
||||
with get_session() as sess:
|
||||
return _load(sess)
|
||||
|
||||
|
||||
def ensure_toronto_cma_zone(session: Session | None = None) -> int:
|
||||
"""Ensure Toronto CMA zone exists in dim_cmhc_zone.
|
||||
|
||||
Creates the zone if it doesn't exist.
|
||||
|
||||
Args:
|
||||
session: Optional existing session.
|
||||
|
||||
Returns:
|
||||
The zone_key for Toronto CMA.
|
||||
"""
|
||||
|
||||
def _ensure(sess: Session) -> int:
|
||||
zone = (
|
||||
sess.query(DimCMHCZone).filter_by(zone_code=TORONTO_CMA_ZONE_CODE).first()
|
||||
)
|
||||
if zone:
|
||||
return int(zone.zone_key)
|
||||
|
||||
# Create new zone
|
||||
new_zone = DimCMHCZone(
|
||||
zone_code=TORONTO_CMA_ZONE_CODE,
|
||||
zone_name=TORONTO_CMA_ZONE_NAME,
|
||||
geometry=None, # CMA-level doesn't need geometry
|
||||
)
|
||||
sess.add(new_zone)
|
||||
sess.flush()
|
||||
logger.info(f"Created Toronto CMA zone with zone_key={new_zone.zone_key}")
|
||||
return int(new_zone.zone_key)
|
||||
|
||||
if session:
|
||||
return _ensure(session)
|
||||
with get_session() as sess:
|
||||
result = _ensure(sess)
|
||||
sess.commit()
|
||||
return result
|
||||
|
||||
|
||||
def load_statcan_cmhc_data(
|
||||
records: list[Any], # List of CMHCRentalRecord from statcan_cmhc parser
|
||||
session: Session | None = None,
|
||||
) -> int:
|
||||
"""Load CMHC rental data from StatCan parser into fact_rentals.
|
||||
|
||||
This function handles CMA-level data from the StatCan API, which provides
|
||||
aggregate Toronto data rather than zone-level HMIP data.
|
||||
|
||||
Args:
|
||||
records: List of CMHCRentalRecord dataclass instances from statcan_cmhc parser.
|
||||
session: Optional existing session.
|
||||
|
||||
Returns:
|
||||
Number of records loaded.
|
||||
"""
|
||||
from portfolio_app.toronto.parsers.statcan_cmhc import (
|
||||
CMHCRentalRecord as StatCanRecord,
|
||||
)
|
||||
|
||||
def _load(sess: Session) -> int:
|
||||
# Ensure Toronto CMA zone exists
|
||||
zone_key = ensure_toronto_cma_zone(sess)
|
||||
|
||||
loaded = 0
|
||||
for record in records:
|
||||
if not isinstance(record, StatCanRecord):
|
||||
logger.warning(f"Skipping invalid record type: {type(record)}")
|
||||
continue
|
||||
|
||||
# Generate date key for this record's survey date
|
||||
survey_date = date(record.year, record.month, 1)
|
||||
date_key = generate_date_key(survey_date)
|
||||
|
||||
# Verify time dimension exists
|
||||
time_dim = sess.query(DimTime).filter_by(date_key=date_key).first()
|
||||
if not time_dim:
|
||||
logger.warning(
|
||||
f"Time dimension not found for {survey_date}, skipping record"
|
||||
)
|
||||
continue
|
||||
|
||||
# Create fact record
|
||||
fact = FactRentals(
|
||||
date_key=date_key,
|
||||
zone_key=zone_key,
|
||||
bedroom_type=record.bedroom_type,
|
||||
universe=record.universe,
|
||||
avg_rent=float(record.avg_rent) if record.avg_rent else None,
|
||||
median_rent=None, # StatCan doesn't provide median
|
||||
vacancy_rate=float(record.vacancy_rate)
|
||||
if record.vacancy_rate
|
||||
else None,
|
||||
availability_rate=None,
|
||||
turnover_rate=None,
|
||||
rent_change_pct=None,
|
||||
reliability_code=None,
|
||||
)
|
||||
|
||||
# Upsert
|
||||
inserted, updated = upsert_by_key(
|
||||
sess, FactRentals, [fact], ["date_key", "zone_key", "bedroom_type"]
|
||||
)
|
||||
loaded += inserted + updated
|
||||
|
||||
logger.info(f"Loaded {loaded} CMHC rental records from StatCan")
|
||||
return loaded
|
||||
|
||||
if session:
|
||||
return _load(session)
|
||||
with get_session() as sess:
|
||||
result = _load(sess)
|
||||
sess.commit()
|
||||
return result
|
||||
|
||||
383
portfolio_app/toronto/parsers/statcan_cmhc.py
Normal file
383
portfolio_app/toronto/parsers/statcan_cmhc.py
Normal file
@@ -0,0 +1,383 @@
|
||||
"""Parser for CMHC rental data via Statistics Canada API.
|
||||
|
||||
Downloads rental market data (average rent, vacancy rates, universe)
|
||||
from Statistics Canada's Web Data Service.
|
||||
|
||||
Data Sources:
|
||||
- Table 34-10-0127: Vacancy rates
|
||||
- Table 34-10-0129: Rental universe (total units)
|
||||
- Table 34-10-0133: Average rent by bedroom type
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
import zipfile
|
||||
from dataclasses import dataclass
|
||||
from decimal import Decimal
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
import pandas as pd
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# StatCan Web Data Service endpoints
|
||||
STATCAN_API_BASE = "https://www150.statcan.gc.ca/t1/wds/rest"
|
||||
STATCAN_DOWNLOAD_BASE = "https://www150.statcan.gc.ca/n1/tbl/csv"
|
||||
|
||||
# CMHC table IDs
|
||||
CMHC_TABLES = {
|
||||
"vacancy": "34100127",
|
||||
"universe": "34100129",
|
||||
"rent": "34100133",
|
||||
}
|
||||
|
||||
# Toronto CMA identifier in StatCan data
|
||||
TORONTO_DGUID = "2011S0503535"
|
||||
TORONTO_GEO_NAME = "Toronto, Ontario"
|
||||
|
||||
|
||||
@dataclass
|
||||
class CMHCRentalRecord:
|
||||
"""Rental market record for database loading."""
|
||||
|
||||
year: int
|
||||
month: int # CMHC surveys in October, so month=10
|
||||
zone_name: str
|
||||
bedroom_type: str
|
||||
avg_rent: Decimal | None
|
||||
vacancy_rate: Decimal | None
|
||||
universe: int | None
|
||||
|
||||
|
||||
class StatCanCMHCParser:
|
||||
"""Parser for CMHC rental data from Statistics Canada.
|
||||
|
||||
Downloads and processes rental market survey data including:
|
||||
- Average rents by bedroom type
|
||||
- Vacancy rates
|
||||
- Rental universe (total units)
|
||||
|
||||
Data is available from 1987 to present, updated annually in January.
|
||||
"""
|
||||
|
||||
BEDROOM_TYPE_MAP = {
|
||||
"Bachelor units": "bachelor",
|
||||
"One bedroom units": "1bed",
|
||||
"Two bedroom units": "2bed",
|
||||
"Three bedroom units": "3bed",
|
||||
"Total": "total",
|
||||
}
|
||||
|
||||
STRUCTURE_FILTER = "Apartment structures of six units and over"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cache_dir: Path | None = None,
|
||||
timeout: float = 60.0,
|
||||
) -> None:
|
||||
"""Initialize parser.
|
||||
|
||||
Args:
|
||||
cache_dir: Optional directory for caching downloaded files.
|
||||
timeout: HTTP request timeout in seconds.
|
||||
"""
|
||||
self._cache_dir = cache_dir
|
||||
self._timeout = timeout
|
||||
self._client: httpx.Client | None = None
|
||||
|
||||
@property
|
||||
def client(self) -> httpx.Client:
|
||||
"""Lazy-initialize HTTP client."""
|
||||
if self._client is None:
|
||||
self._client = httpx.Client(
|
||||
timeout=self._timeout,
|
||||
follow_redirects=True,
|
||||
)
|
||||
return self._client
|
||||
|
||||
def close(self) -> None:
|
||||
"""Close HTTP client."""
|
||||
if self._client is not None:
|
||||
self._client.close()
|
||||
self._client = None
|
||||
|
||||
def __enter__(self) -> "StatCanCMHCParser":
|
||||
return self
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
self.close()
|
||||
|
||||
def _get_download_url(self, table_id: str) -> str:
|
||||
"""Get CSV download URL for a StatCan table.
|
||||
|
||||
Args:
|
||||
table_id: StatCan table ID (e.g., "34100133").
|
||||
|
||||
Returns:
|
||||
Direct download URL for the CSV zip file.
|
||||
"""
|
||||
api_url = f"{STATCAN_API_BASE}/getFullTableDownloadCSV/{table_id}/en"
|
||||
response = self.client.get(api_url)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
if data.get("status") != "SUCCESS":
|
||||
raise ValueError(f"StatCan API error: {data}")
|
||||
|
||||
return str(data["object"])
|
||||
|
||||
def _download_table(self, table_id: str) -> pd.DataFrame:
|
||||
"""Download and extract a StatCan table as DataFrame.
|
||||
|
||||
Args:
|
||||
table_id: StatCan table ID.
|
||||
|
||||
Returns:
|
||||
DataFrame with table data.
|
||||
"""
|
||||
# Check cache first
|
||||
if self._cache_dir:
|
||||
cache_file = self._cache_dir / f"{table_id}.csv"
|
||||
if cache_file.exists():
|
||||
logger.debug(f"Loading {table_id} from cache")
|
||||
return pd.read_csv(cache_file)
|
||||
|
||||
# Get download URL and fetch
|
||||
download_url = self._get_download_url(table_id)
|
||||
logger.info(f"Downloading StatCan table {table_id}...")
|
||||
|
||||
response = self.client.get(download_url)
|
||||
response.raise_for_status()
|
||||
|
||||
# Extract CSV from zip
|
||||
with zipfile.ZipFile(io.BytesIO(response.content)) as zf:
|
||||
csv_name = f"{table_id}.csv"
|
||||
with zf.open(csv_name) as f:
|
||||
df = pd.read_csv(f)
|
||||
|
||||
# Cache if directory specified
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
df.to_csv(self._cache_dir / f"{table_id}.csv", index=False)
|
||||
|
||||
logger.info(f"Downloaded {len(df)} records from table {table_id}")
|
||||
return df
|
||||
|
||||
def _filter_toronto(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Filter DataFrame to Toronto CMA only.
|
||||
|
||||
Args:
|
||||
df: Full StatCan DataFrame.
|
||||
|
||||
Returns:
|
||||
DataFrame filtered to Toronto.
|
||||
"""
|
||||
# Try DGUID first, then GEO name
|
||||
if "DGUID" in df.columns:
|
||||
toronto_df = df[df["DGUID"] == TORONTO_DGUID]
|
||||
if len(toronto_df) > 0:
|
||||
return toronto_df
|
||||
|
||||
if "GEO" in df.columns:
|
||||
return df[df["GEO"] == TORONTO_GEO_NAME]
|
||||
|
||||
raise ValueError("Could not identify Toronto data in DataFrame")
|
||||
|
||||
def get_vacancy_rates(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[int, Decimal]:
|
||||
"""Fetch Toronto vacancy rates by year.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping year to vacancy rate.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["vacancy"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter years if specified
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
# Extract year -> rate mapping
|
||||
rates = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
value = row.get("VALUE")
|
||||
if pd.notna(value):
|
||||
rates[year] = Decimal(str(value))
|
||||
|
||||
logger.info(f"Fetched vacancy rates for {len(rates)} years")
|
||||
return rates
|
||||
|
||||
def get_rental_universe(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[tuple[int, str], int]:
|
||||
"""Fetch Toronto rental universe (total units) by year and bedroom type.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping (year, bedroom_type) to unit count.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["universe"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter to standard apartment structures
|
||||
if "Type of structure" in df.columns:
|
||||
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
|
||||
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
universe = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
bedroom_raw = row.get("Type of unit", "Total")
|
||||
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
|
||||
value = row.get("VALUE")
|
||||
|
||||
if pd.notna(value) and value is not None:
|
||||
universe[(year, bedroom)] = int(str(value))
|
||||
|
||||
logger.info(
|
||||
f"Fetched rental universe for {len(universe)} year/bedroom combinations"
|
||||
)
|
||||
return universe
|
||||
|
||||
def get_average_rents(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[tuple[int, str], Decimal]:
|
||||
"""Fetch Toronto average rents by year and bedroom type.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping (year, bedroom_type) to average rent.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["rent"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter to standard apartment structures (most reliable data)
|
||||
if "Type of structure" in df.columns:
|
||||
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
|
||||
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
rents = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
bedroom_raw = row.get("Type of unit", "Total")
|
||||
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
|
||||
value = row.get("VALUE")
|
||||
|
||||
if pd.notna(value) and str(value) not in ("F", ".."):
|
||||
with contextlib.suppress(Exception):
|
||||
rents[(year, bedroom)] = Decimal(str(value))
|
||||
|
||||
logger.info(f"Fetched average rents for {len(rents)} year/bedroom combinations")
|
||||
return rents
|
||||
|
||||
def get_all_rental_data(
|
||||
self,
|
||||
start_year: int = 2014,
|
||||
end_year: int | None = None,
|
||||
) -> list[CMHCRentalRecord]:
|
||||
"""Fetch all Toronto rental data and combine into records.
|
||||
|
||||
Args:
|
||||
start_year: First year to include.
|
||||
end_year: Last year to include (defaults to current year + 1).
|
||||
|
||||
Returns:
|
||||
List of CMHCRentalRecord objects ready for database loading.
|
||||
"""
|
||||
import datetime
|
||||
|
||||
if end_year is None:
|
||||
end_year = datetime.date.today().year + 1
|
||||
|
||||
years = list(range(start_year, end_year + 1))
|
||||
|
||||
logger.info(
|
||||
f"Fetching CMHC rental data for Toronto ({start_year}-{end_year})..."
|
||||
)
|
||||
|
||||
# Fetch all data types
|
||||
vacancy_rates = self.get_vacancy_rates(years)
|
||||
rents = self.get_average_rents(years)
|
||||
universe = self.get_rental_universe(years)
|
||||
|
||||
# Combine into records
|
||||
records = []
|
||||
bedroom_types = ["bachelor", "1bed", "2bed", "3bed"]
|
||||
|
||||
for year in years:
|
||||
vacancy = vacancy_rates.get(year)
|
||||
|
||||
for bedroom in bedroom_types:
|
||||
avg_rent = rents.get((year, bedroom))
|
||||
units = universe.get((year, bedroom))
|
||||
|
||||
# Skip if no rent data for this year/bedroom
|
||||
if avg_rent is None:
|
||||
continue
|
||||
|
||||
records.append(
|
||||
CMHCRentalRecord(
|
||||
year=year,
|
||||
month=10, # CMHC surveys in October
|
||||
zone_name="Toronto CMA",
|
||||
bedroom_type=bedroom,
|
||||
avg_rent=avg_rent,
|
||||
vacancy_rate=vacancy,
|
||||
universe=units,
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(f"Created {len(records)} CMHC rental records")
|
||||
return records
|
||||
|
||||
|
||||
def fetch_toronto_rental_data(
|
||||
start_year: int = 2014,
|
||||
end_year: int | None = None,
|
||||
cache_dir: Path | None = None,
|
||||
) -> list[CMHCRentalRecord]:
|
||||
"""Convenience function to fetch Toronto rental data.
|
||||
|
||||
Args:
|
||||
start_year: First year to include.
|
||||
end_year: Last year to include.
|
||||
cache_dir: Optional cache directory.
|
||||
|
||||
Returns:
|
||||
List of CMHCRentalRecord objects.
|
||||
"""
|
||||
with StatCanCMHCParser(cache_dir=cache_dir) as parser:
|
||||
return parser.get_all_rental_data(start_year, end_year)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test the parser
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
records = fetch_toronto_rental_data(start_year=2020)
|
||||
|
||||
print(f"\nFetched {len(records)} records")
|
||||
print("\nSample records:")
|
||||
for r in records[:10]:
|
||||
print(
|
||||
f" {r.year} {r.bedroom_type}: ${r.avg_rent} rent, {r.vacancy_rate}% vacancy"
|
||||
)
|
||||
@@ -6,6 +6,7 @@ from the City of Toronto's Open Data Portal.
|
||||
API Documentation: https://open.toronto.ca/dataset/
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import json
|
||||
import logging
|
||||
from decimal import Decimal
|
||||
@@ -193,6 +194,9 @@ class TorontoOpenDataParser:
|
||||
def _fetch_geojson(self, package_id: str) -> dict[str, Any]:
|
||||
"""Fetch GeoJSON data from a package.
|
||||
|
||||
Handles both pure GeoJSON responses and CSV responses with embedded
|
||||
geometry columns (common in Toronto Open Data).
|
||||
|
||||
Args:
|
||||
package_id: The package/dataset ID.
|
||||
|
||||
@@ -212,16 +216,65 @@ class TorontoOpenDataParser:
|
||||
|
||||
response = self.client.get(url)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
# Cache the response
|
||||
# Try to parse as JSON first
|
||||
try:
|
||||
data = response.json()
|
||||
# If it's already a valid GeoJSON FeatureCollection, return it
|
||||
if isinstance(data, dict) and data.get("type") == "FeatureCollection":
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file = self._cache_dir / f"{package_id}.geojson"
|
||||
with open(cache_file, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f)
|
||||
return dict(data)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If JSON parsing failed, it's likely CSV with embedded geometry
|
||||
# Parse CSV and convert to GeoJSON FeatureCollection
|
||||
logger.info("Response is CSV format, converting to GeoJSON...")
|
||||
import csv
|
||||
import io
|
||||
|
||||
# Increase field size limit for large geometry columns
|
||||
csv.field_size_limit(10 * 1024 * 1024) # 10 MB
|
||||
|
||||
csv_text = response.text
|
||||
reader = csv.DictReader(io.StringIO(csv_text))
|
||||
|
||||
features = []
|
||||
for row in reader:
|
||||
# Extract geometry from the 'geometry' column if present
|
||||
geometry = None
|
||||
if "geometry" in row and row["geometry"]:
|
||||
with contextlib.suppress(json.JSONDecodeError):
|
||||
geometry = json.loads(row["geometry"])
|
||||
|
||||
# Build properties from all other columns
|
||||
properties = {k: v for k, v in row.items() if k != "geometry"}
|
||||
|
||||
features.append(
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": geometry,
|
||||
"properties": properties,
|
||||
}
|
||||
)
|
||||
|
||||
geojson_data: dict[str, Any] = {
|
||||
"type": "FeatureCollection",
|
||||
"features": features,
|
||||
}
|
||||
|
||||
# Cache the converted response
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file = self._cache_dir / f"{package_id}.geojson"
|
||||
with open(cache_file, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f)
|
||||
json.dump(geojson_data, f)
|
||||
|
||||
return dict(data)
|
||||
return geojson_data
|
||||
|
||||
def _fetch_csv_as_json(self, package_id: str) -> list[dict[str, Any]]:
|
||||
"""Fetch CSV data as JSON records via CKAN datastore.
|
||||
@@ -282,29 +335,32 @@ class TorontoOpenDataParser:
|
||||
props = feature.get("properties", {})
|
||||
geometry = feature.get("geometry")
|
||||
|
||||
# Extract area_id from various possible property names
|
||||
area_id = props.get("AREA_ID") or props.get("area_id")
|
||||
if area_id is None:
|
||||
# Try AREA_SHORT_CODE as fallback
|
||||
short_code = props.get("AREA_SHORT_CODE", "")
|
||||
if short_code:
|
||||
# Extract numeric part
|
||||
area_id = int("".join(c for c in short_code if c.isdigit()) or "0")
|
||||
# Use AREA_SHORT_CODE as the primary ID (1-158 range)
|
||||
# AREA_ID is a large internal identifier not useful for our schema
|
||||
short_code = props.get("AREA_SHORT_CODE") or props.get(
|
||||
"area_short_code", ""
|
||||
)
|
||||
if short_code:
|
||||
area_id = int("".join(c for c in str(short_code) if c.isdigit()) or "0")
|
||||
else:
|
||||
# Fallback to _id (row number) if AREA_SHORT_CODE not available
|
||||
area_id = int(props.get("_id", 0))
|
||||
|
||||
if area_id == 0:
|
||||
logger.warning(f"Skipping neighbourhood with no valid ID: {props}")
|
||||
continue
|
||||
|
||||
area_name = (
|
||||
props.get("AREA_NAME")
|
||||
or props.get("area_name")
|
||||
or f"Neighbourhood {area_id}"
|
||||
)
|
||||
area_short_code = props.get("AREA_SHORT_CODE") or props.get(
|
||||
"area_short_code"
|
||||
)
|
||||
|
||||
records.append(
|
||||
NeighbourhoodRecord(
|
||||
area_id=int(area_id),
|
||||
area_id=area_id,
|
||||
area_name=str(area_name),
|
||||
area_short_code=area_short_code,
|
||||
area_short_code=str(short_code) if short_code else None,
|
||||
geometry=geometry,
|
||||
)
|
||||
)
|
||||
@@ -314,17 +370,17 @@ class TorontoOpenDataParser:
|
||||
|
||||
# Mapping of indicator names to CensusRecord fields
|
||||
# Keys are partial matches (case-insensitive) found in the "Characteristic" column
|
||||
# Order matters - first match wins, so more specific patterns come first
|
||||
# Note: owner/renter counts are raw numbers, not percentages - calculated in dbt
|
||||
CENSUS_INDICATOR_MAPPING: dict[str, str] = {
|
||||
"population, 2021": "population",
|
||||
"population, 2016": "population",
|
||||
"population density per square kilometre": "population_density",
|
||||
"median total income of household": "median_household_income",
|
||||
"average total income of household": "average_household_income",
|
||||
"median total income of households in": "median_household_income",
|
||||
"average total income of households in": "average_household_income",
|
||||
"unemployment rate": "unemployment_rate",
|
||||
"bachelor's degree or higher": "pct_bachelors_or_higher",
|
||||
"owner": "pct_owner_occupied",
|
||||
"renter": "pct_renter_occupied",
|
||||
"median age": "median_age",
|
||||
"average age": "median_age",
|
||||
"average value of dwellings": "average_dwelling_value",
|
||||
}
|
||||
|
||||
@@ -358,17 +414,31 @@ class TorontoOpenDataParser:
|
||||
logger.info(f"Fetched {len(raw_records)} census profile rows")
|
||||
|
||||
# Find the characteristic/indicator column name
|
||||
# Prioritize "Characteristic" over "Category" since both may exist
|
||||
sample_row = raw_records[0]
|
||||
char_col = None
|
||||
for col in sample_row:
|
||||
col_lower = col.lower()
|
||||
if "characteristic" in col_lower or "category" in col_lower:
|
||||
char_col = col
|
||||
break
|
||||
|
||||
# First try exact match for Characteristic
|
||||
if "Characteristic" in sample_row:
|
||||
char_col = "Characteristic"
|
||||
else:
|
||||
# Fall back to pattern matching
|
||||
for col in sample_row:
|
||||
col_lower = col.lower()
|
||||
if "characteristic" in col_lower:
|
||||
char_col = col
|
||||
break
|
||||
|
||||
# Last resort: try Category
|
||||
if not char_col:
|
||||
for col in sample_row:
|
||||
if "category" in col.lower():
|
||||
char_col = col
|
||||
break
|
||||
|
||||
if not char_col:
|
||||
# Try common column names
|
||||
for candidate in ["Characteristic", "Category", "Topic", "_id"]:
|
||||
# Try other common column names
|
||||
for candidate in ["Topic", "_id"]:
|
||||
if candidate in sample_row:
|
||||
char_col = candidate
|
||||
break
|
||||
|
||||
@@ -37,7 +37,7 @@ def get_neighbourhoods_geojson(year: int = 2021) -> dict[str, Any]:
|
||||
ST_AsGeoJSON(geometry)::json as geom,
|
||||
population,
|
||||
livability_score
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
AND geometry IS NOT NULL
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Service layer for querying neighbourhood data from dbt marts."""
|
||||
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from typing import Any
|
||||
|
||||
@@ -8,6 +9,8 @@ from sqlalchemy import text
|
||||
|
||||
from portfolio_app.toronto.models import get_engine
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFrame:
|
||||
"""Execute SQL query and return DataFrame.
|
||||
@@ -23,8 +26,10 @@ def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFra
|
||||
engine = get_engine()
|
||||
with engine.connect() as conn:
|
||||
return pd.read_sql(text(sql), conn, params=params)
|
||||
except Exception:
|
||||
# Return empty DataFrame on connection or query error
|
||||
except Exception as e:
|
||||
logger.error(f"Query failed: {e}")
|
||||
logger.debug(f"Failed SQL: {sql}")
|
||||
logger.debug(f"Params: {params}")
|
||||
return pd.DataFrame()
|
||||
|
||||
|
||||
@@ -56,7 +61,7 @@ def get_overview_data(year: int = 2021) -> pd.DataFrame:
|
||||
rent_to_income_pct,
|
||||
avg_rent_2bed,
|
||||
total_amenities_per_1000
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
ORDER BY livability_score DESC NULLS LAST
|
||||
"""
|
||||
@@ -95,7 +100,7 @@ def get_housing_data(year: int = 2021) -> pd.DataFrame:
|
||||
affordability_index,
|
||||
rent_yoy_change_pct,
|
||||
income_quintile
|
||||
FROM mart_neighbourhood_housing
|
||||
FROM public_marts.mart_neighbourhood_housing
|
||||
WHERE year = :year
|
||||
ORDER BY affordability_index ASC NULLS LAST
|
||||
"""
|
||||
@@ -112,26 +117,22 @@ def get_safety_data(year: int = 2021) -> pd.DataFrame:
|
||||
|
||||
Returns:
|
||||
DataFrame with columns: neighbourhood_id, neighbourhood_name,
|
||||
total_crime_rate, violent_crime_rate, property_crime_rate, etc.
|
||||
total_crime_rate, violent_crimes, property_crimes, etc.
|
||||
"""
|
||||
sql = """
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
year,
|
||||
total_crimes,
|
||||
total_incidents as total_crimes,
|
||||
crime_rate_per_100k as total_crime_rate,
|
||||
violent_crimes,
|
||||
violent_crime_rate,
|
||||
property_crimes,
|
||||
property_crime_rate,
|
||||
theft_crimes,
|
||||
theft_rate,
|
||||
crime_yoy_change_pct,
|
||||
crime_trend
|
||||
FROM mart_neighbourhood_safety
|
||||
assault_count + robbery_count + homicide_count as violent_crimes,
|
||||
break_enter_count + auto_theft_count as property_crimes,
|
||||
theft_over_count as theft_crimes,
|
||||
crime_yoy_change_pct
|
||||
FROM public_marts.mart_neighbourhood_safety
|
||||
WHERE year = :year
|
||||
ORDER BY total_crime_rate ASC NULLS LAST
|
||||
ORDER BY crime_rate_per_100k ASC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -152,22 +153,22 @@ def get_demographics_data(year: int = 2021) -> pd.DataFrame:
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
census_year as year,
|
||||
year,
|
||||
population,
|
||||
population_density,
|
||||
population_change_pct,
|
||||
median_household_income,
|
||||
average_household_income,
|
||||
income_quintile,
|
||||
income_index,
|
||||
median_age,
|
||||
pct_under_18,
|
||||
pct_18_to_64,
|
||||
pct_65_plus,
|
||||
pct_bachelors_or_higher,
|
||||
age_index,
|
||||
pct_owner_occupied,
|
||||
pct_renter_occupied,
|
||||
education_bachelors_pct as pct_bachelors_or_higher,
|
||||
unemployment_rate,
|
||||
diversity_index
|
||||
FROM mart_neighbourhood_demographics
|
||||
WHERE census_year = :year
|
||||
tenure_diversity_index as diversity_index
|
||||
FROM public_marts.mart_neighbourhood_demographics
|
||||
WHERE year = :year
|
||||
ORDER BY population DESC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
@@ -183,26 +184,26 @@ def get_amenities_data(year: int = 2021) -> pd.DataFrame:
|
||||
|
||||
Returns:
|
||||
DataFrame with columns: neighbourhood_id, neighbourhood_name,
|
||||
amenity_score, parks_per_capita, schools_per_capita, transit_score, etc.
|
||||
amenity_score, parks_per_1000, schools_per_1000, etc.
|
||||
"""
|
||||
sql = """
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
year,
|
||||
park_count,
|
||||
parks_count as park_count,
|
||||
parks_per_1000,
|
||||
school_count,
|
||||
schools_count as school_count,
|
||||
schools_per_1000,
|
||||
childcare_count,
|
||||
childcare_per_1000,
|
||||
transit_count as childcare_count,
|
||||
transit_per_1000 as childcare_per_1000,
|
||||
total_amenities,
|
||||
total_amenities_per_1000,
|
||||
amenity_score,
|
||||
amenity_rank
|
||||
FROM mart_neighbourhood_amenities
|
||||
amenity_index as amenity_score,
|
||||
amenity_tier as amenity_rank
|
||||
FROM public_marts.mart_neighbourhood_amenities
|
||||
WHERE year = :year
|
||||
ORDER BY amenity_score DESC NULLS LAST
|
||||
ORDER BY amenity_index DESC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -249,17 +250,17 @@ def get_neighbourhood_details(
|
||||
a.park_count,
|
||||
a.school_count,
|
||||
a.total_amenities
|
||||
FROM mart_neighbourhood_overview o
|
||||
LEFT JOIN mart_neighbourhood_safety s
|
||||
FROM public_marts.mart_neighbourhood_overview o
|
||||
LEFT JOIN public_marts.mart_neighbourhood_safety s
|
||||
ON o.neighbourhood_id = s.neighbourhood_id
|
||||
AND o.year = s.year
|
||||
LEFT JOIN mart_neighbourhood_housing h
|
||||
LEFT JOIN public_marts.mart_neighbourhood_housing h
|
||||
ON o.neighbourhood_id = h.neighbourhood_id
|
||||
AND o.year = h.year
|
||||
LEFT JOIN mart_neighbourhood_demographics d
|
||||
LEFT JOIN public_marts.mart_neighbourhood_demographics d
|
||||
ON o.neighbourhood_id = d.neighbourhood_id
|
||||
AND o.year = d.census_year
|
||||
LEFT JOIN mart_neighbourhood_amenities a
|
||||
LEFT JOIN public_marts.mart_neighbourhood_amenities a
|
||||
ON o.neighbourhood_id = a.neighbourhood_id
|
||||
AND o.year = a.year
|
||||
WHERE o.neighbourhood_id = :neighbourhood_id
|
||||
@@ -288,7 +289,7 @@ def get_neighbourhood_list(year: int = 2021) -> list[dict[str, Any]]:
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
population
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
ORDER BY neighbourhood_name
|
||||
"""
|
||||
@@ -317,19 +318,19 @@ def get_rankings(
|
||||
"""
|
||||
# Map metrics to their source tables
|
||||
table_map = {
|
||||
"livability_score": "mart_neighbourhood_overview",
|
||||
"safety_score": "mart_neighbourhood_overview",
|
||||
"affordability_score": "mart_neighbourhood_overview",
|
||||
"amenity_score": "mart_neighbourhood_overview",
|
||||
"crime_rate_per_100k": "mart_neighbourhood_safety",
|
||||
"total_crime_rate": "mart_neighbourhood_safety",
|
||||
"avg_rent_2bed": "mart_neighbourhood_housing",
|
||||
"affordability_index": "mart_neighbourhood_housing",
|
||||
"population": "mart_neighbourhood_demographics",
|
||||
"median_household_income": "mart_neighbourhood_demographics",
|
||||
"livability_score": "public_marts.mart_neighbourhood_overview",
|
||||
"safety_score": "public_marts.mart_neighbourhood_overview",
|
||||
"affordability_score": "public_marts.mart_neighbourhood_overview",
|
||||
"amenity_score": "public_marts.mart_neighbourhood_overview",
|
||||
"crime_rate_per_100k": "public_marts.mart_neighbourhood_safety",
|
||||
"total_crime_rate": "public_marts.mart_neighbourhood_safety",
|
||||
"avg_rent_2bed": "public_marts.mart_neighbourhood_housing",
|
||||
"affordability_index": "public_marts.mart_neighbourhood_housing",
|
||||
"population": "public_marts.mart_neighbourhood_demographics",
|
||||
"median_household_income": "public_marts.mart_neighbourhood_demographics",
|
||||
}
|
||||
|
||||
table = table_map.get(metric, "mart_neighbourhood_overview")
|
||||
table = table_map.get(metric, "public_marts.mart_neighbourhood_overview")
|
||||
year_col = "census_year" if "demographics" in table else "year"
|
||||
|
||||
order = "ASC" if ascending else "DESC"
|
||||
@@ -375,7 +376,7 @@ def get_city_averages(year: int = 2021) -> dict[str, Any]:
|
||||
AVG(crime_rate_per_100k) as avg_crime_rate,
|
||||
AVG(avg_rent_2bed) as avg_rent_2bed,
|
||||
AVG(rent_to_income_pct) as avg_rent_to_income
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
"""
|
||||
df = _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -38,12 +38,16 @@ from portfolio_app.toronto.loaders import ( # noqa: E402
|
||||
load_census_data,
|
||||
load_crime_data,
|
||||
load_neighbourhoods,
|
||||
load_statcan_cmhc_data,
|
||||
load_time_dimension,
|
||||
)
|
||||
from portfolio_app.toronto.parsers import ( # noqa: E402
|
||||
TorontoOpenDataParser,
|
||||
TorontoPoliceParser,
|
||||
)
|
||||
from portfolio_app.toronto.parsers.statcan_cmhc import ( # noqa: E402
|
||||
fetch_toronto_rental_data,
|
||||
)
|
||||
from portfolio_app.toronto.schemas import Neighbourhood # noqa: E402
|
||||
|
||||
# Configure logging
|
||||
@@ -91,6 +95,9 @@ class DataPipeline:
|
||||
# 5. Load amenities
|
||||
self._load_amenities(session)
|
||||
|
||||
# 6. Load CMHC rental data from StatCan
|
||||
self._load_rentals(session)
|
||||
|
||||
session.commit()
|
||||
logger.info("All data committed to database")
|
||||
|
||||
@@ -241,6 +248,32 @@ class DataPipeline:
|
||||
|
||||
self.stats["amenities"] = total_count
|
||||
|
||||
def _load_rentals(self, session: Any) -> None:
|
||||
"""Fetch and load CMHC rental data from StatCan."""
|
||||
logger.info("Fetching CMHC rental data from Statistics Canada...")
|
||||
|
||||
if self.dry_run:
|
||||
logger.info(" [DRY RUN] Would fetch and load CMHC rental data")
|
||||
return
|
||||
|
||||
try:
|
||||
# Fetch rental data (2014-present)
|
||||
rental_records = fetch_toronto_rental_data(start_year=2014)
|
||||
|
||||
if not rental_records:
|
||||
logger.warning(" No rental records fetched")
|
||||
return
|
||||
|
||||
count = load_statcan_cmhc_data(rental_records, session)
|
||||
self.stats["rentals"] = count
|
||||
logger.info(f" Loaded {count} CMHC rental records")
|
||||
except Exception as e:
|
||||
logger.warning(f" Failed to load CMHC rental data: {e}")
|
||||
if self.verbose:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
def run_dbt(self) -> bool:
|
||||
"""Run dbt to transform data.
|
||||
|
||||
|
||||
@@ -25,8 +25,10 @@ def main() -> int:
|
||||
engine = get_engine()
|
||||
|
||||
# Test connection
|
||||
from sqlalchemy import text
|
||||
|
||||
with engine.connect() as conn:
|
||||
result = conn.execute("SELECT 1")
|
||||
result = conn.execute(text("SELECT 1"))
|
||||
result.fetchone()
|
||||
print("Database connection successful")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user