{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Transit Accessibility Bar Chart\n", "\n", "Shows transit stops per 1,000 residents across Toronto neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_amenities` | neighbourhood × year | transit_per_1000, transit_index, transit_count |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import pandas as pd\n", "from dotenv import load_dotenv\n", "from sqlalchemy import create_engine\n", "\n", "# Load .env from project root\n", "load_dotenv(\"../../.env\")\n", "\n", "engine = create_engine(os.environ[\"DATABASE_URL\"])\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_name,\n", " transit_per_1000,\n", " transit_index,\n", " transit_count,\n", " population,\n", " amenity_tier\n", "FROM public_marts.mart_neighbourhood_amenities\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n", " AND transit_per_1000 IS NOT NULL\n", "ORDER BY transit_per_1000 DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Sort by transit accessibility\n", "2. Select top 20 for visualization" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = df.head(20).to_dict(\"records\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[[\"neighbourhood_name\", \"transit_per_1000\", \"transit_index\", \"transit_count\"]].head(\n", " 10\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "\n", "sys.path.insert(0, \"../..\")\n", "\n", "from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n", "\n", "fig = create_horizontal_bar(\n", " data=data,\n", " name_column=\"neighbourhood_name\",\n", " value_column=\"transit_per_1000\",\n", " title=\"Top 20 Neighbourhoods by Transit Accessibility\",\n", " color=\"#00BCD4\",\n", " value_format=\".2f\",\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transit Statistics" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"City-wide Transit Statistics:\")\n", "print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n", "print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n", "print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n", "print(f\" Best Access: {df['transit_per_1000'].max():.2f} per 1,000\")\n", "print(f\" Worst Access: {df['transit_per_1000'].min():.2f} per 1,000\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }