{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Median Income Choropleth Map\n", "\n", "Displays median household income across Toronto's 158 neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import pandas as pd\n", "from dotenv import load_dotenv\n", "from sqlalchemy import create_engine\n", "\n", "# Load .env from project root\n", "load_dotenv(\"../../.env\")\n", "\n", "engine = create_engine(os.environ[\"DATABASE_URL\"])\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_id,\n", " neighbourhood_name,\n", " geometry,\n", " year,\n", " median_household_income,\n", " income_index,\n", " income_quintile,\n", " population,\n", " unemployment_rate\n", "FROM public_marts.mart_neighbourhood_demographics\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n", "ORDER BY median_household_income DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Filter to most recent census year\n", "2. Convert geometry to GeoJSON\n", "3. Scale income to thousands for readability" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "import geopandas as gpd\n", "\n", "df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n", "\n", "gdf = gpd.GeoDataFrame(\n", " df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n", ")\n", "\n", "geojson = json.loads(gdf.to_json())\n", "data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\n", " [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n", "].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "\n", "sys.path.insert(0, \"../..\")\n", "\n", "from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n", "\n", "fig = create_choropleth_figure(\n", " geojson=geojson,\n", " data=data,\n", " location_key=\"neighbourhood_id\",\n", " color_column=\"median_household_income\",\n", " hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n", " color_scale=\"Viridis\",\n", " title=\"Toronto Median Household Income by Neighbourhood\",\n", " zoom=10,\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Income Quintile Distribution" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n", " [\"count\", \"mean\", \"min\", \"max\"]\n", ").round(0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }