{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Livability Score Choropleth Map\n", "\n", "Displays neighbourhood livability scores on an interactive map of Toronto's 158 neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_overview` | neighbourhood × year | livability_score, safety_score, affordability_score, amenity_score, geometry |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ['DATABASE_URL'])\n\nquery = \"\"\"\nSELECT\n neighbourhood_id,\n neighbourhood_name,\n geometry,\n year,\n livability_score,\n safety_score,\n affordability_score,\n amenity_score,\n population,\n median_household_income\nFROM public_marts.mart_neighbourhood_overview\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\nORDER BY livability_score DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Filter to most recent year of data\n", "2. Extract GeoJSON from PostGIS geometry column\n", "3. Pass to choropleth figure factory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Transform geometry to GeoJSON\n", "import geopandas as gpd\n", "import json\n", "\n", "# Convert WKB geometry to GeoDataFrame\n", "gdf = gpd.GeoDataFrame(\n", " df,\n", " geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n", " crs='EPSG:4326'\n", ")\n", "\n", "# Create GeoJSON FeatureCollection\n", "geojson = json.loads(gdf.to_json())\n", "\n", "# Prepare data for figure factory\n", "data = df.drop(columns=['geometry']).to_dict('records')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['neighbourhood_name', 'livability_score', 'safety_score', 'affordability_score', 'amenity_score']].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n", "\n", "**Key Parameters:**\n", "- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n", "- `data`: List of dicts with neighbourhood_id and scores\n", "- `location_key`: 'neighbourhood_id'\n", "- `color_column`: 'livability_score' (or safety_score, etc.)\n", "- `color_scale`: 'RdYlGn' (red=low, yellow=mid, green=high)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.choropleth import create_choropleth_figure\n", "\n", "fig = create_choropleth_figure(\n", " geojson=geojson,\n", " data=data,\n", " location_key='neighbourhood_id',\n", " color_column='livability_score',\n", " hover_data=['neighbourhood_name', 'safety_score', 'affordability_score', 'amenity_score'],\n", " color_scale='RdYlGn',\n", " title='Toronto Neighbourhood Livability Score',\n", " zoom=10,\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Score Components\n", "\n", "The livability score is a weighted composite:\n", "\n", "| Component | Weight | Source |\n", "|-----------|--------|--------|\n", "| Safety | 30% | Inverse of crime rate per 100K |\n", "| Affordability | 40% | Inverse of rent-to-income ratio |\n", "| Amenities | 30% | Amenities per 1,000 residents |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }