{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Crime Type Breakdown Bar Chart\n", "\n", "Stacked bar chart showing crime composition by Major Crime Indicator (MCI) categories." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "import os\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_name,\n", " assault_count,\n", " auto_theft_count,\n", " break_enter_count,\n", " robbery_count,\n", " theft_over_count,\n", " homicide_count,\n", " total_incidents,\n", " crime_rate_per_100k\n", "FROM mart_neighbourhood_safety\n", "WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_safety)\n", "ORDER BY total_incidents DESC\n", "LIMIT 15\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded top {len(df)} neighbourhoods by crime volume\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Select top 15 neighbourhoods by total incidents\n", "2. Melt crime type columns into rows\n", "3. Pass to stacked bar figure factory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df_melted = df.melt(\n", " id_vars=['neighbourhood_name', 'total_incidents'],\n", " value_vars=['assault_count', 'auto_theft_count', 'break_enter_count', \n", " 'robbery_count', 'theft_over_count', 'homicide_count'],\n", " var_name='crime_type',\n", " value_name='count'\n", ")\n", "\n", "# Clean labels\n", "df_melted['crime_type'] = df_melted['crime_type'].str.replace('_count', '').str.replace('_', ' ').str.title()\n", "\n", "data = df_melted.to_dict('records')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['neighbourhood_name', 'assault_count', 'auto_theft_count', 'break_enter_count', 'total_incidents']].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.bar_charts import create_stacked_bar\n", "\n", "fig = create_stacked_bar(\n", " data=data,\n", " x_column='neighbourhood_name',\n", " value_column='count',\n", " category_column='crime_type',\n", " title='Crime Type Breakdown - Top 15 Neighbourhoods',\n", " color_map={\n", " 'Assault': '#d62728',\n", " 'Auto Theft': '#ff7f0e',\n", " 'Break Enter': '#9467bd',\n", " 'Robbery': '#8c564b',\n", " 'Theft Over': '#e377c2',\n", " 'Homicide': '#1f77b4'\n", " },\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### MCI Categories\n", "\n", "| Category | Description |\n", "|----------|------------|\n", "| Assault | Physical attacks |\n", "| Auto Theft | Vehicle theft |\n", "| Break & Enter | Burglary |\n", "| Robbery | Theft with force/threat |\n", "| Theft Over | Theft > $5,000 |\n", "| Homicide | Murder/manslaughter |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }