{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Amenity Index Choropleth Map\n", "\n", "Displays total amenities per 1,000 residents across Toronto's 158 neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "from dotenv import load_dotenv\n", "import os\n", "\n", "# Load .env from project root\n", "load_dotenv('../../.env')\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL'))\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_id,\n", " neighbourhood_name,\n", " geometry,\n", " year,\n", " total_amenities_per_1000,\n", " amenity_index,\n", " amenity_tier,\n", " parks_per_1000,\n", " schools_per_1000,\n", " transit_per_1000,\n", " total_amenities,\n", " population\n", "FROM public_marts.mart_neighbourhood_amenities\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n", "ORDER BY total_amenities_per_1000 DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Filter to most recent year\n", "2. Convert geometry to GeoJSON" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import geopandas as gpd\n", "import json\n", "\n", "gdf = gpd.GeoDataFrame(\n", " df,\n", " geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n", " crs='EPSG:4326'\n", ")\n", "\n", "geojson = json.loads(gdf.to_json())\n", "data = df.drop(columns=['geometry']).to_dict('records')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['neighbourhood_name', 'total_amenities_per_1000', 'amenity_index', 'amenity_tier']].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.choropleth import create_choropleth_figure\n", "\n", "fig = create_choropleth_figure(\n", " geojson=geojson,\n", " data=data,\n", " location_key='neighbourhood_id',\n", " color_column='total_amenities_per_1000',\n", " hover_data=['neighbourhood_name', 'amenity_index', 'parks_per_1000', 'schools_per_1000'],\n", " color_scale='Greens',\n", " title='Toronto Amenities per 1,000 Population',\n", " zoom=10,\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Amenity Tier Interpretation\n", "\n", "| Tier | Meaning |\n", "|------|--------|\n", "| 1 | Best served (top 20%) |\n", "| 2-4 | Middle tiers |\n", "| 5 | Underserved (bottom 20%) |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }