{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Rent Trend Line Chart\n", "\n", "Shows 5-year rental price trends across Toronto neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | year, avg_rent_2bed, rent_yoy_change_pct |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "from dotenv import load_dotenv\n", "import os\n", "\n", "# Load .env from project root\n", "load_dotenv('../../.env')\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL'))\n", "\n", "# City-wide average rent by year\n", "query = \"\"\"\n", "SELECT\n", " year,\n", " AVG(avg_rent_bachelor) as avg_rent_bachelor,\n", " AVG(avg_rent_1bed) as avg_rent_1bed,\n", " AVG(avg_rent_2bed) as avg_rent_2bed,\n", " AVG(avg_rent_3bed) as avg_rent_3bed,\n", " AVG(rent_yoy_change_pct) as avg_yoy_change\n", "FROM public_marts.mart_neighbourhood_housing\n", "WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_housing)\n", "GROUP BY year\n", "ORDER BY year\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} years of rent data\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Aggregate rent by year (city-wide average)\n", "2. Convert year to datetime for proper x-axis\n", "3. Reshape for multi-line chart by bedroom type" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create date column from year\n", "df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n", "\n", "# Melt for multi-line chart\n", "df_melted = df.melt(\n", " id_vars=['year', 'date'],\n", " value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n", " var_name='bedroom_type',\n", " value_name='avg_rent'\n", ")\n", "\n", "# Clean labels\n", "df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n", " 'avg_rent_bachelor': 'Bachelor',\n", " 'avg_rent_1bed': '1 Bedroom',\n", " 'avg_rent_2bed': '2 Bedroom',\n", " 'avg_rent_3bed': '3 Bedroom'\n", "})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n", "\n", "**Key Parameters:**\n", "- `date_column`: 'date'\n", "- `price_column`: 'avg_rent'\n", "- `group_column`: 'bedroom_type' (for multi-line)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.time_series import create_price_time_series\n", "\n", "data = df_melted.to_dict('records')\n", "\n", "fig = create_price_time_series(\n", " data=data,\n", " date_column='date',\n", " price_column='avg_rent',\n", " group_column='bedroom_type',\n", " title='Toronto Average Rent Trend (5 Years)',\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### YoY Change Analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Show year-over-year changes\n", "print(\"Year-over-Year Rent Change (%)\")\n", "df[['year', 'avg_yoy_change']].dropna()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }