{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Median Income Choropleth Map\n", "\n", "Displays median household income across Toronto's 158 neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "import os\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_id,\n", " neighbourhood_name,\n", " geometry,\n", " year,\n", " median_household_income,\n", " income_index,\n", " income_quintile,\n", " population,\n", " unemployment_rate\n", "FROM public_marts.mart_neighbourhood_demographics\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n", "ORDER BY median_household_income DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Filter to most recent census year\n", "2. Convert geometry to GeoJSON\n", "3. Scale income to thousands for readability" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import geopandas as gpd\n", "import json\n", "\n", "df['income_thousands'] = df['median_household_income'] / 1000\n", "\n", "gdf = gpd.GeoDataFrame(\n", " df,\n", " geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n", " crs='EPSG:4326'\n", ")\n", "\n", "geojson = json.loads(gdf.to_json())\n", "data = df.drop(columns=['geometry']).to_dict('records')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['neighbourhood_name', 'median_household_income', 'income_index', 'income_quintile']].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.choropleth import create_choropleth_figure\n", "\n", "fig = create_choropleth_figure(\n", " geojson=geojson,\n", " data=data,\n", " location_key='neighbourhood_id',\n", " color_column='median_household_income',\n", " hover_data=['neighbourhood_name', 'income_index', 'income_quintile'],\n", " color_scale='Viridis',\n", " title='Toronto Median Household Income by Neighbourhood',\n", " zoom=10,\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Income Quintile Distribution" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.groupby('income_quintile')['median_household_income'].agg(['count', 'mean', 'min', 'max']).round(0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }