{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Affordability Index Choropleth Map\n", "\n", "Displays housing affordability across Toronto's 158 neighbourhoods. Index of 100 = city average." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_housing` | neighbourhood × year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import pandas as pd\n", "from dotenv import load_dotenv\n", "from sqlalchemy import create_engine\n", "\n", "# Load .env from project root\n", "load_dotenv(\"../../.env\")\n", "\n", "engine = create_engine(os.environ[\"DATABASE_URL\"])\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_id,\n", " neighbourhood_name,\n", " geometry,\n", " year,\n", " affordability_index,\n", " rent_to_income_pct,\n", " avg_rent_2bed,\n", " median_household_income,\n", " is_affordable\n", "FROM public_marts.mart_neighbourhood_housing\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n", "ORDER BY affordability_index ASC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Filter to most recent year\n", "2. Convert geometry to GeoJSON\n", "3. Lower index = more affordable (inverted for visualization clarity)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "import geopandas as gpd\n", "\n", "gdf = gpd.GeoDataFrame(\n", " df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n", ")\n", "\n", "geojson = json.loads(gdf.to_json())\n", "data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\n", " [\n", " \"neighbourhood_name\",\n", " \"affordability_index\",\n", " \"rent_to_income_pct\",\n", " \"avg_rent_2bed\",\n", " \"is_affordable\",\n", " ]\n", "].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n", "\n", "**Key Parameters:**\n", "- `color_column`: 'affordability_index'\n", "- `color_scale`: 'RdYlGn_r' (reversed: green=affordable, red=expensive)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "\n", "sys.path.insert(0, \"../..\")\n", "\n", "from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n", "\n", "fig = create_choropleth_figure(\n", " geojson=geojson,\n", " data=data,\n", " location_key=\"neighbourhood_id\",\n", " color_column=\"affordability_index\",\n", " hover_data=[\"neighbourhood_name\", \"rent_to_income_pct\", \"avg_rent_2bed\"],\n", " color_scale=\"RdYlGn_r\", # Reversed: lower index (affordable) = green\n", " title=\"Toronto Housing Affordability Index\",\n", " zoom=10,\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Index Interpretation\n", "\n", "| Index | Meaning |\n", "|-------|--------|\n", "| < 100 | More affordable than city average |\n", "| = 100 | City average affordability |\n", "| > 100 | Less affordable than city average |\n", "\n", "Affordability calculated as: `rent_to_income_pct / city_avg_rent_to_income * 100`" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }