{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Crime Type Breakdown Bar Chart\n", "\n", "Stacked bar chart showing crime composition by Major Crime Indicator (MCI) categories." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import pandas as pd\n", "from dotenv import load_dotenv\n", "from sqlalchemy import create_engine\n", "\n", "# Load .env from project root\n", "load_dotenv(\"../../.env\")\n", "\n", "engine = create_engine(os.environ[\"DATABASE_URL\"])\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_name,\n", " assault_count,\n", " auto_theft_count,\n", " break_enter_count,\n", " robbery_count,\n", " theft_over_count,\n", " homicide_count,\n", " total_incidents,\n", " crime_rate_per_100k\n", "FROM public_marts.mart_neighbourhood_safety\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n", "ORDER BY total_incidents DESC\n", "LIMIT 15\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded top {len(df)} neighbourhoods by crime volume\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Select top 15 neighbourhoods by total incidents\n", "2. Melt crime type columns into rows\n", "3. Pass to stacked bar figure factory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df_melted = df.melt(\n", " id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n", " value_vars=[\n", " \"assault_count\",\n", " \"auto_theft_count\",\n", " \"break_enter_count\",\n", " \"robbery_count\",\n", " \"theft_over_count\",\n", " \"homicide_count\",\n", " ],\n", " var_name=\"crime_type\",\n", " value_name=\"count\",\n", ")\n", "\n", "# Clean labels\n", "df_melted[\"crime_type\"] = (\n", " df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n", ")\n", "\n", "data = df_melted.to_dict(\"records\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[\n", " [\n", " \"neighbourhood_name\",\n", " \"assault_count\",\n", " \"auto_theft_count\",\n", " \"break_enter_count\",\n", " \"total_incidents\",\n", " ]\n", "].head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "\n", "sys.path.insert(0, \"../..\")\n", "\n", "from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n", "\n", "fig = create_stacked_bar(\n", " data=data,\n", " x_column=\"neighbourhood_name\",\n", " value_column=\"count\",\n", " category_column=\"crime_type\",\n", " title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n", " color_map={\n", " \"Assault\": \"#d62728\",\n", " \"Auto Theft\": \"#ff7f0e\",\n", " \"Break Enter\": \"#9467bd\",\n", " \"Robbery\": \"#8c564b\",\n", " \"Theft Over\": \"#e377c2\",\n", " \"Homicide\": \"#1f77b4\",\n", " },\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### MCI Categories\n", "\n", "| Category | Description |\n", "|----------|------------|\n", "| Assault | Physical attacks |\n", "| Auto Theft | Vehicle theft |\n", "| Break & Enter | Burglary |\n", "| Robbery | Theft with force/threat |\n", "| Theft Over | Theft > $5,000 |\n", "| Homicide | Murder/manslaughter |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }