{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Top & Bottom 10 Neighbourhoods Bar Chart\n", "\n", "Horizontal bar chart showing the highest and lowest scoring neighbourhoods by livability." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "import os\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_name,\n", " livability_score,\n", " safety_score,\n", " affordability_score,\n", " amenity_score\n", "FROM public_marts.mart_neighbourhood_overview\n", "WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n", " AND livability_score IS NOT NULL\n", "ORDER BY livability_score DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods with scores\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Sort by livability_score descending\n", "2. Take top 10 and bottom 10\n", "3. Pass to ranking bar figure factory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# The figure factory handles top/bottom selection internally\n", "# Just prepare as list of dicts\n", "data = df.to_dict('records')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Top 5:\")\n", "display(df.head(5))\n", "print(\"\\nBottom 5:\")\n", "display(df.tail(5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n", "\n", "**Key Parameters:**\n", "- `data`: List of dicts with all neighbourhoods\n", "- `name_column`: 'neighbourhood_name'\n", "- `value_column`: 'livability_score'\n", "- `top_n`: 10 (green bars)\n", "- `bottom_n`: 10 (red bars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.bar_charts import create_ranking_bar\n", "\n", "fig = create_ranking_bar(\n", " data=data,\n", " name_column='neighbourhood_name',\n", " value_column='livability_score',\n", " title='Top & Bottom 10 Neighbourhoods by Livability',\n", " top_n=10,\n", " bottom_n=10,\n", " color_top='#4CAF50', # Green for top performers\n", " color_bottom='#F44336', # Red for bottom performers\n", " value_format='.1f',\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpretation\n", "\n", "- **Green bars**: Highest livability scores (best combination of safety, affordability, and amenities)\n", "- **Red bars**: Lowest livability scores (areas that may need targeted investment)\n", "\n", "The ranking bar chart provides quick context for which neighbourhoods stand out at either extreme." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }