{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Amenity Radar Chart\n", "\n", "Spider/radar chart comparing amenity categories for selected neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sqlalchemy import create_engine\n", "import os\n", "\n", "engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n", "\n", "query = \"\"\"\n", "SELECT\n", " neighbourhood_name,\n", " parks_index,\n", " schools_index,\n", " transit_index,\n", " amenity_index,\n", " amenity_tier\n", "FROM mart_neighbourhood_amenities\n", "WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n", "ORDER BY amenity_index DESC\n", "\"\"\"\n", "\n", "df = pd.read_sql(query, engine)\n", "print(f\"Loaded {len(df)} neighbourhoods\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Select top 5 and bottom 5 neighbourhoods by amenity index\n", "2. Reshape for radar chart format" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Select representative neighbourhoods\n", "top_5 = df.head(5)\n", "bottom_5 = df.tail(5)\n", "\n", "# Prepare radar data\n", "categories = ['Parks', 'Schools', 'Transit']\n", "index_columns = ['parks_index', 'schools_index', 'transit_index']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n", "display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n", "print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n", "display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_radar` from `portfolio_app.figures.radar`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, '../..')\n", "\n", "from portfolio_app.figures.radar import create_radar_figure\n", "\n", "# Compare top neighbourhood vs city average (100)\n", "top_hood = top_5.iloc[0]\n", "\n", "data = [\n", " {\n", " 'name': top_hood['neighbourhood_name'],\n", " 'values': [top_hood['parks_index'], top_hood['schools_index'], top_hood['transit_index']],\n", " 'categories': categories\n", " },\n", " {\n", " 'name': 'City Average',\n", " 'values': [100, 100, 100],\n", " 'categories': categories\n", " }\n", "]\n", "\n", "fig = create_radar_figure(\n", " data=data,\n", " title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Index Interpretation\n", "\n", "| Value | Meaning |\n", "|-------|--------|\n", "| < 100 | Below city average |\n", "| = 100 | City average |\n", "| > 100 | Above city average |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }