# Toronto Neighbourhood Dashboard - Notebooks Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern. ## Directory Structure ``` notebooks/ ├── README.md # This file ├── overview/ # Overview tab visualizations ├── housing/ # Housing tab visualizations ├── safety/ # Safety tab visualizations ├── demographics/ # Demographics tab visualizations └── amenities/ # Amenities tab visualizations ``` ## Notebook Template Each notebook follows a standard two-section structure: ### Section 1: Data Reference Documents the data pipeline: - **Source Tables**: List of dbt marts/tables used - **SQL Query**: The exact query to fetch data - **Transformation Steps**: Any pandas/python transformations - **Sample Output**: First 10 rows of the result ### Section 2: Data Visualization Documents the figure creation: - **Figure Factory**: Import from `portfolio_app.figures` - **Parameters**: Key configuration options - **Rendered Output**: The actual visualization ## Available Figure Factories | Factory | Module | Use Case | |---------|--------|----------| | `create_choropleth` | `figures.choropleth` | Map visualizations | | `create_ranking_bar` | `figures.bar_charts` | Top/bottom N rankings | | `create_stacked_bar` | `figures.bar_charts` | Category breakdowns | | `create_scatter` | `figures.scatter` | Correlation plots | | `create_radar` | `figures.radar` | Multi-metric comparisons | | `create_age_pyramid` | `figures.demographics` | Age distributions | | `create_time_series` | `figures.time_series` | Trend lines | ## Usage 1. Start Jupyter from project root: ```bash jupyter notebook notebooks/ ``` 2. Ensure database is running: ```bash make docker-up ``` 3. Each notebook is self-contained - run all cells top to bottom. ## Notebook Naming Convention `{metric}_{chart_type}.ipynb` Examples: - `livability_choropleth.ipynb` - `crime_trend_line.ipynb` - `age_pyramid.ipynb`