{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Amenity Radar Chart\n", "\n", "Spider/radar chart comparing amenity categories for selected neighbourhoods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Data Reference\n", "\n", "### Source Tables\n", "\n", "| Table | Grain | Key Columns |\n", "|-------|-------|-------------|\n", "| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n", "\n", "### SQL Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ.get('DATABASE_URL'))\n\nquery = \"\"\"\nSELECT\n neighbourhood_name,\n parks_index,\n schools_index,\n transit_index,\n amenity_index,\n amenity_tier\nFROM public_marts.mart_neighbourhood_amenities\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\nORDER BY amenity_index DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Transformation Steps\n", "\n", "1. Select top 5 and bottom 5 neighbourhoods by amenity index\n", "2. Reshape for radar chart format" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Select representative neighbourhoods\n", "top_5 = df.head(5)\n", "bottom_5 = df.tail(5)\n", "\n", "# Prepare radar data\n", "categories = ['Parks', 'Schools', 'Transit']\n", "index_columns = ['parks_index', 'schools_index', 'transit_index']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sample Output" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n", "display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n", "print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n", "display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Data Visualization\n", "\n", "### Figure Factory\n", "\n", "Uses `create_radar` from `portfolio_app.figures.radar`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": "import sys\nsys.path.insert(0, '../..')\n\nfrom portfolio_app.figures.radar import create_comparison_radar\n\n# Compare top neighbourhood vs city average (100)\ntop_hood = top_5.iloc[0]\nmetrics = ['parks_index', 'schools_index', 'transit_index']\n\nfig = create_comparison_radar(\n selected_data=top_hood.to_dict(),\n average_data={'parks_index': 100, 'schools_index': 100, 'transit_index': 100},\n metrics=metrics,\n selected_name=top_hood['neighbourhood_name'],\n average_name='City Average',\n title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n)\n\nfig.show()" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Index Interpretation\n", "\n", "| Value | Meaning |\n", "|-------|--------|\n", "| < 100 | Below city average |\n", "| = 100 | City average |\n", "| > 100 | Above city average |" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }