Files
personal-portfolio/portfolio_app/toronto/demo_data.py
lmiranda 140d3085bf feat: Sprint 6 polish - methodology, demo data, deployment prep
- Add policy event markers to time series charts
- Create methodology page (/toronto/methodology) with data sources
- Add demo data module for testing without full pipeline
- Update README with project documentation
- Add health check endpoint (/health)
- Add database initialization script
- Export new figure factory functions

Closes #21

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-11 21:50:45 -05:00

258 lines
9.1 KiB
Python

"""Demo/sample data for testing the Toronto Housing Dashboard without full pipeline.
This module provides synthetic data for development and demonstration purposes.
Replace with real data from the database in production.
"""
from datetime import date
from typing import Any
def get_demo_districts() -> list[dict[str, Any]]:
"""Return sample TRREB district data."""
return [
{"district_code": "W01", "district_name": "Long Branch", "area_type": "West"},
{"district_code": "W02", "district_name": "Mimico", "area_type": "West"},
{
"district_code": "W03",
"district_name": "Kingsway South",
"area_type": "West",
},
{"district_code": "W04", "district_name": "Edenbridge", "area_type": "West"},
{"district_code": "W05", "district_name": "Islington", "area_type": "West"},
{"district_code": "W06", "district_name": "Rexdale", "area_type": "West"},
{"district_code": "W07", "district_name": "Willowdale", "area_type": "West"},
{"district_code": "W08", "district_name": "York", "area_type": "West"},
{
"district_code": "C01",
"district_name": "Downtown Core",
"area_type": "Central",
},
{"district_code": "C02", "district_name": "Annex", "area_type": "Central"},
{
"district_code": "C03",
"district_name": "Forest Hill",
"area_type": "Central",
},
{
"district_code": "C04",
"district_name": "Lawrence Park",
"area_type": "Central",
},
{
"district_code": "C06",
"district_name": "Willowdale East",
"area_type": "Central",
},
{"district_code": "C07", "district_name": "Thornhill", "area_type": "Central"},
{"district_code": "C08", "district_name": "Waterfront", "area_type": "Central"},
{"district_code": "E01", "district_name": "Leslieville", "area_type": "East"},
{"district_code": "E02", "district_name": "The Beaches", "area_type": "East"},
{"district_code": "E03", "district_name": "Danforth", "area_type": "East"},
{"district_code": "E04", "district_name": "Birch Cliff", "area_type": "East"},
{"district_code": "E05", "district_name": "Scarborough", "area_type": "East"},
]
def get_demo_purchase_data() -> list[dict[str, Any]]:
"""Return sample purchase data for time series visualization."""
import random
random.seed(42)
data = []
base_prices = {
"W01": 850000,
"C01": 1200000,
"E01": 950000,
}
for year in [2024, 2025]:
for month in range(1, 13):
if year == 2025 and month > 12:
break
for district, base_price in base_prices.items():
# Add some randomness and trend
trend = (year - 2024) * 12 + month
price_variation = random.uniform(-0.05, 0.05)
trend_factor = 1 + (trend * 0.002) # Slight upward trend
avg_price = int(base_price * trend_factor * (1 + price_variation))
sales = random.randint(50, 200)
data.append(
{
"district_code": district,
"full_date": date(year, month, 1),
"year": year,
"month": month,
"avg_price": avg_price,
"median_price": int(avg_price * 0.95),
"sales_count": sales,
"new_listings": int(sales * random.uniform(1.2, 1.8)),
"active_listings": int(sales * random.uniform(2.0, 3.5)),
"days_on_market": random.randint(15, 45),
"sale_to_list_ratio": round(random.uniform(0.95, 1.05), 2),
}
)
return data
def get_demo_rental_data() -> list[dict[str, Any]]:
"""Return sample rental data for visualization."""
data = []
zones = [
("Zone01", "Downtown"),
("Zone02", "Midtown"),
("Zone03", "North York"),
("Zone04", "Scarborough"),
("Zone05", "Etobicoke"),
]
bedroom_types = ["bachelor", "1_bedroom", "2_bedroom", "3_bedroom"]
base_rents = {
"bachelor": 1800,
"1_bedroom": 2200,
"2_bedroom": 2800,
"3_bedroom": 3400,
}
for year in [2021, 2022, 2023, 2024, 2025]:
for zone_code, zone_name in zones:
for bedroom in bedroom_types:
# Rental trend: ~5% increase per year
year_factor = 1 + ((year - 2021) * 0.05)
base_rent = base_rents[bedroom]
data.append(
{
"zone_code": zone_code,
"zone_name": zone_name,
"survey_year": year,
"full_date": date(year, 10, 1),
"bedroom_type": bedroom,
"average_rent": int(base_rent * year_factor),
"median_rent": int(base_rent * year_factor * 0.98),
"vacancy_rate": round(
2.5 - (year - 2021) * 0.3, 1
), # Decreasing vacancy
"universe": 5000 + (year - 2021) * 200,
}
)
return data
def get_demo_policy_events() -> list[dict[str, Any]]:
"""Return sample policy events for annotation."""
return [
{
"event_date": date(2024, 6, 5),
"effective_date": date(2024, 6, 5),
"level": "federal",
"category": "monetary",
"title": "BoC Rate Cut (25bp)",
"description": "Bank of Canada cuts overnight rate by 25 basis points to 4.75%",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 7, 24),
"effective_date": date(2024, 7, 24),
"level": "federal",
"category": "monetary",
"title": "BoC Rate Cut (25bp)",
"description": "Bank of Canada cuts overnight rate by 25 basis points to 4.50%",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 9, 4),
"effective_date": date(2024, 9, 4),
"level": "federal",
"category": "monetary",
"title": "BoC Rate Cut (25bp)",
"description": "Bank of Canada cuts overnight rate by 25 basis points to 4.25%",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 10, 23),
"effective_date": date(2024, 10, 23),
"level": "federal",
"category": "monetary",
"title": "BoC Rate Cut (50bp)",
"description": "Bank of Canada cuts overnight rate by 50 basis points to 3.75%",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 12, 11),
"effective_date": date(2024, 12, 11),
"level": "federal",
"category": "monetary",
"title": "BoC Rate Cut (50bp)",
"description": "Bank of Canada cuts overnight rate by 50 basis points to 3.25%",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 9, 16),
"effective_date": date(2024, 12, 15),
"level": "federal",
"category": "regulatory",
"title": "CMHC 30-Year Amortization",
"description": "30-year amortization extended to all first-time buyers and new builds",
"expected_direction": "bullish",
},
{
"event_date": date(2024, 9, 16),
"effective_date": date(2024, 12, 15),
"level": "federal",
"category": "regulatory",
"title": "Insured Mortgage Cap $1.5M",
"description": "Insured mortgage cap raised from $1M to $1.5M",
"expected_direction": "bullish",
},
]
def get_demo_summary_metrics() -> dict[str, dict[str, Any]]:
"""Return summary metrics for KPI cards."""
return {
"avg_price": {
"value": 1067968,
"title": "Avg. Price (2025)",
"delta": -4.7,
"delta_suffix": "%",
"prefix": "$",
"format_spec": ",.0f",
"positive_is_good": True,
},
"total_sales": {
"value": 67610,
"title": "Total Sales (2024)",
"delta": 2.6,
"delta_suffix": "%",
"format_spec": ",.0f",
"positive_is_good": True,
},
"avg_rent": {
"value": 2450,
"title": "Avg. Rent (2025)",
"delta": 3.2,
"delta_suffix": "%",
"prefix": "$",
"format_spec": ",.0f",
"positive_is_good": False,
},
"vacancy_rate": {
"value": 1.8,
"title": "Vacancy Rate",
"delta": -0.4,
"delta_suffix": "pp",
"suffix": "%",
"format_spec": ".1f",
"positive_is_good": False,
},
}