Files
personal-portfolio/notebooks/housing/affordability_choropleth.ipynb
lmiranda 92763a17c4
Some checks failed
CI / lint-and-test (push) Has been cancelled
fix: Use os.environ[] instead of .get() for DATABASE_URL
Fixes Pylance type error - create_engine() expects str, not str | None.
Using direct access raises KeyError if not set, which is correct behavior.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:03:23 -05:00

179 lines
4.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Affordability Index Choropleth Map\n",
"\n",
"Displays housing affordability across Toronto's 158 neighbourhoods. Index of 100 = city average."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"from dotenv import load_dotenv\n",
"import os\n",
"\n",
"# Load .env from project root\n",
"load_dotenv('../../.env')\n",
"\n",
"engine = create_engine(os.environ['DATABASE_URL'])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_id,\n",
" neighbourhood_name,\n",
" geometry,\n",
" year,\n",
" affordability_index,\n",
" rent_to_income_pct,\n",
" avg_rent_2bed,\n",
" median_household_income,\n",
" is_affordable\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
"ORDER BY affordability_index ASC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year\n",
"2. Convert geometry to GeoJSON\n",
"3. Lower index = more affordable (inverted for visualization clarity)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'affordability_index', 'rent_to_income_pct', 'avg_rent_2bed', 'is_affordable']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `color_column`: 'affordability_index'\n",
"- `color_scale`: 'RdYlGn_r' (reversed: green=affordable, red=expensive)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='affordability_index',\n",
" hover_data=['neighbourhood_name', 'rent_to_income_pct', 'avg_rent_2bed'],\n",
" color_scale='RdYlGn_r', # Reversed: lower index (affordable) = green\n",
" title='Toronto Housing Affordability Index',\n",
" zoom=10,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Index Interpretation\n",
"\n",
"| Index | Meaning |\n",
"|-------|--------|\n",
"| < 100 | More affordable than city average |\n",
"| = 100 | City average affordability |\n",
"| > 100 | Less affordable than city average |\n",
"\n",
"Affordability calculated as: `rent_to_income_pct / city_avg_rent_to_income * 100`"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}