Some checks failed
CI / lint-and-test (push) Has been cancelled
All 15 notebooks now use load_dotenv('../../.env') instead of
hardcoded fallback credentials.
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
178 lines
4.3 KiB
Plaintext
178 lines
4.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Age Distribution Analysis\n",
|
|
"\n",
|
|
"Compares median age and age index across Toronto neighbourhoods."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. Data Reference\n",
|
|
"\n",
|
|
"### Source Tables\n",
|
|
"\n",
|
|
"| Table | Grain | Key Columns |\n",
|
|
"|-------|-------|-------------|\n",
|
|
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | median_age, age_index, city_avg_age |\n",
|
|
"\n",
|
|
"### SQL Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from sqlalchemy import create_engine\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"import os\n",
|
|
"\n",
|
|
"# Load .env from project root\n",
|
|
"load_dotenv('../../.env')\n",
|
|
"\n",
|
|
"engine = create_engine(os.environ.get('DATABASE_URL'))\n",
|
|
"\n",
|
|
"query = \"\"\"\n",
|
|
"SELECT\n",
|
|
" neighbourhood_name,\n",
|
|
" median_age,\n",
|
|
" age_index,\n",
|
|
" city_avg_age,\n",
|
|
" population,\n",
|
|
" income_quintile,\n",
|
|
" pct_renter_occupied\n",
|
|
"FROM public_marts.mart_neighbourhood_demographics\n",
|
|
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
|
|
" AND median_age IS NOT NULL\n",
|
|
"ORDER BY median_age DESC\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"df = pd.read_sql(query, engine)\n",
|
|
"print(f\"Loaded {len(df)} neighbourhoods with age data\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Transformation Steps\n",
|
|
"\n",
|
|
"1. Filter to most recent census year\n",
|
|
"2. Calculate deviation from city average\n",
|
|
"3. Classify as younger/older than average"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"city_avg = df['city_avg_age'].iloc[0]\n",
|
|
"df['age_category'] = df['median_age'].apply(\n",
|
|
" lambda x: 'Younger' if x < city_avg else 'Older'\n",
|
|
")\n",
|
|
"df['age_deviation'] = df['median_age'] - city_avg\n",
|
|
"\n",
|
|
"data = df.to_dict('records')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Sample Output"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(f\"City Average Age: {city_avg:.1f}\")\n",
|
|
"print(\"\\nYoungest Neighbourhoods:\")\n",
|
|
"display(df.tail(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])\n",
|
|
"print(\"\\nOldest Neighbourhoods:\")\n",
|
|
"display(df.head(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2. Data Visualization\n",
|
|
"\n",
|
|
"### Figure Factory\n",
|
|
"\n",
|
|
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.insert(0, '../..')\n",
|
|
"\n",
|
|
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
|
"\n",
|
|
"fig = create_ranking_bar(\n",
|
|
" data=data,\n",
|
|
" name_column='neighbourhood_name',\n",
|
|
" value_column='median_age',\n",
|
|
" title='Youngest & Oldest Neighbourhoods (Median Age)',\n",
|
|
" top_n=10,\n",
|
|
" bottom_n=10,\n",
|
|
" color_top='#FF9800', # Orange for older\n",
|
|
" color_bottom='#2196F3', # Blue for younger\n",
|
|
" value_format='.1f',\n",
|
|
")\n",
|
|
"\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Age vs Income Correlation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Age by income quintile\n",
|
|
"print(\"Median Age by Income Quintile:\")\n",
|
|
"df.groupby('income_quintile')['median_age'].mean().round(1)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.11.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|