Sprint 3 implementation: - Pydantic schemas for TRREB, CMHC, and dimension data validation - SQLAlchemy models with PostGIS geometry for fact and dimension tables - Parser structure (stubs) for TRREB PDF and CMHC CSV processing Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
"""TRREB PDF parser for monthly market watch reports.
|
|
|
|
This module provides the structure for parsing TRREB (Toronto Regional Real Estate Board)
|
|
monthly Market Watch PDF reports into structured data.
|
|
"""
|
|
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
from portfolio_app.toronto.schemas import TRREBMonthlyRecord, TRREBMonthlyReport
|
|
|
|
|
|
class TRREBParser:
|
|
"""Parser for TRREB Market Watch PDF reports.
|
|
|
|
TRREB publishes monthly Market Watch reports as PDFs containing:
|
|
- Summary statistics by area (416, 905, Total)
|
|
- District-level breakdowns
|
|
- Year-over-year comparisons
|
|
|
|
The parser extracts tabular data from these PDFs and validates
|
|
against the TRREBMonthlyRecord schema.
|
|
"""
|
|
|
|
def __init__(self, pdf_path: Path) -> None:
|
|
"""Initialize parser with path to PDF file.
|
|
|
|
Args:
|
|
pdf_path: Path to the TRREB Market Watch PDF file.
|
|
"""
|
|
self.pdf_path = pdf_path
|
|
self._validate_path()
|
|
|
|
def _validate_path(self) -> None:
|
|
"""Validate that the PDF path exists and is readable."""
|
|
if not self.pdf_path.exists():
|
|
raise FileNotFoundError(f"PDF not found: {self.pdf_path}")
|
|
if not self.pdf_path.suffix.lower() == ".pdf":
|
|
raise ValueError(f"Expected PDF file, got: {self.pdf_path.suffix}")
|
|
|
|
def parse(self) -> TRREBMonthlyReport:
|
|
"""Parse the PDF and return structured data.
|
|
|
|
Returns:
|
|
TRREBMonthlyReport containing all extracted records.
|
|
|
|
Raises:
|
|
NotImplementedError: PDF parsing not yet implemented.
|
|
"""
|
|
raise NotImplementedError(
|
|
"PDF parsing requires pdfplumber/tabula-py. "
|
|
"Implementation pending Sprint 4 data ingestion."
|
|
)
|
|
|
|
def _extract_tables(self) -> list[dict[str, Any]]:
|
|
"""Extract raw tables from PDF pages.
|
|
|
|
Returns:
|
|
List of dictionaries representing table data.
|
|
"""
|
|
raise NotImplementedError("Table extraction not yet implemented.")
|
|
|
|
def _parse_district_table(
|
|
self, table_data: list[dict[str, Any]]
|
|
) -> list[TRREBMonthlyRecord]:
|
|
"""Parse district-level statistics table.
|
|
|
|
Args:
|
|
table_data: Raw table data extracted from PDF.
|
|
|
|
Returns:
|
|
List of validated TRREBMonthlyRecord objects.
|
|
"""
|
|
raise NotImplementedError("District table parsing not yet implemented.")
|
|
|
|
def _infer_report_date(self) -> tuple[int, int]:
|
|
"""Infer report year and month from PDF filename or content.
|
|
|
|
Returns:
|
|
Tuple of (year, month).
|
|
"""
|
|
raise NotImplementedError("Date inference not yet implemented.")
|