Files
personal-portfolio/notebooks/housing/rent_trend_line.ipynb
lmiranda 28f239e8cd
Some checks failed
CI / lint-and-test (push) Has been cancelled
fix: Update all notebooks to load .env for database credentials
All 15 notebooks now use load_dotenv('../../.env') instead of
hardcoded fallback credentials.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:31:07 -05:00

188 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Rent Trend Line Chart\n",
"\n",
"Shows 5-year rental price trends across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"from dotenv import load_dotenv\n",
"import os\n",
"\n",
"# Load .env from project root\n",
"load_dotenv('../../.env')\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL'))\n",
"\n",
"# City-wide average rent by year\n",
"query = \"\"\"\n",
"SELECT\n",
" year,\n",
" AVG(avg_rent_bachelor) as avg_rent_bachelor,\n",
" AVG(avg_rent_1bed) as avg_rent_1bed,\n",
" AVG(avg_rent_2bed) as avg_rent_2bed,\n",
" AVG(avg_rent_3bed) as avg_rent_3bed,\n",
" AVG(rent_yoy_change_pct) as avg_yoy_change\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_housing)\n",
"GROUP BY year\n",
"ORDER BY year\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} years of rent data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Aggregate rent by year (city-wide average)\n",
"2. Convert year to datetime for proper x-axis\n",
"3. Reshape for multi-line chart by bedroom type"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create date column from year\n",
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
"\n",
"# Melt for multi-line chart\n",
"df_melted = df.melt(\n",
" id_vars=['year', 'date'],\n",
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
" var_name='bedroom_type',\n",
" value_name='avg_rent'\n",
")\n",
"\n",
"# Clean labels\n",
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
" 'avg_rent_bachelor': 'Bachelor',\n",
" 'avg_rent_1bed': '1 Bedroom',\n",
" 'avg_rent_2bed': '2 Bedroom',\n",
" 'avg_rent_3bed': '3 Bedroom'\n",
"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
"\n",
"**Key Parameters:**\n",
"- `date_column`: 'date'\n",
"- `price_column`: 'avg_rent'\n",
"- `group_column`: 'bedroom_type' (for multi-line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.time_series import create_price_time_series\n",
"\n",
"data = df_melted.to_dict('records')\n",
"\n",
"fig = create_price_time_series(\n",
" data=data,\n",
" date_column='date',\n",
" price_column='avg_rent',\n",
" group_column='bedroom_type',\n",
" title='Toronto Average Rent Trend (5 Years)',\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### YoY Change Analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Show year-over-year changes\n",
"print(\"Year-over-Year Rent Change (%)\")\n",
"df[['year', 'avg_yoy_change']].dropna()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}