Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio - Restructure dbt models into domain subdirectories: - shared/ for cross-domain dimensions (dim_time) - staging/toronto/, intermediate/toronto/, marts/toronto/ - Update SQLAlchemy models for raw_toronto schema - Add explicit cross-schema FK relationships for FactRentals - Namespace figure factories under figures/toronto/ - Namespace notebooks under notebooks/toronto/ - Update Makefile with domain-specific targets and env loading - Update all documentation for multi-dashboard structure This enables adding new dashboard projects (e.g., /football, /energy) without structural conflicts or naming collisions. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
201 lines
4.9 KiB
Plaintext
201 lines
4.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Crime Type Breakdown Bar Chart\n",
|
||
"\n",
|
||
"Stacked bar chart showing crime composition by Major Crime Indicator (MCI) categories."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"from dotenv import load_dotenv\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"\n",
|
||
"# Load .env from project root\n",
|
||
"load_dotenv(\"../../.env\")\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" assault_count,\n",
|
||
" auto_theft_count,\n",
|
||
" break_enter_count,\n",
|
||
" robbery_count,\n",
|
||
" theft_over_count,\n",
|
||
" homicide_count,\n",
|
||
" total_incidents,\n",
|
||
" crime_rate_per_100k\n",
|
||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
|
||
"ORDER BY total_incidents DESC\n",
|
||
"LIMIT 15\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded top {len(df)} neighbourhoods by crime volume\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Select top 15 neighbourhoods by total incidents\n",
|
||
"2. Melt crime type columns into rows\n",
|
||
"3. Pass to stacked bar figure factory"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_melted = df.melt(\n",
|
||
" id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n",
|
||
" value_vars=[\n",
|
||
" \"assault_count\",\n",
|
||
" \"auto_theft_count\",\n",
|
||
" \"break_enter_count\",\n",
|
||
" \"robbery_count\",\n",
|
||
" \"theft_over_count\",\n",
|
||
" \"homicide_count\",\n",
|
||
" ],\n",
|
||
" var_name=\"crime_type\",\n",
|
||
" value_name=\"count\",\n",
|
||
")\n",
|
||
"\n",
|
||
"# Clean labels\n",
|
||
"df_melted[\"crime_type\"] = (\n",
|
||
" df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n",
|
||
")\n",
|
||
"\n",
|
||
"data = df_melted.to_dict(\"records\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[\n",
|
||
" [\n",
|
||
" \"neighbourhood_name\",\n",
|
||
" \"assault_count\",\n",
|
||
" \"auto_theft_count\",\n",
|
||
" \"break_enter_count\",\n",
|
||
" \"total_incidents\",\n",
|
||
" ]\n",
|
||
"].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"\n",
|
||
"sys.path.insert(0, \"../..\")\n",
|
||
"\n",
|
||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||
"\n",
|
||
"fig = create_stacked_bar(\n",
|
||
" data=data,\n",
|
||
" x_column=\"neighbourhood_name\",\n",
|
||
" value_column=\"count\",\n",
|
||
" category_column=\"crime_type\",\n",
|
||
" title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n",
|
||
" color_map={\n",
|
||
" \"Assault\": \"#d62728\",\n",
|
||
" \"Auto Theft\": \"#ff7f0e\",\n",
|
||
" \"Break Enter\": \"#9467bd\",\n",
|
||
" \"Robbery\": \"#8c564b\",\n",
|
||
" \"Theft Over\": \"#e377c2\",\n",
|
||
" \"Homicide\": \"#1f77b4\",\n",
|
||
" },\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### MCI Categories\n",
|
||
"\n",
|
||
"| Category | Description |\n",
|
||
"|----------|------------|\n",
|
||
"| Assault | Physical attacks |\n",
|
||
"| Auto Theft | Vehicle theft |\n",
|
||
"| Break & Enter | Burglary |\n",
|
||
"| Robbery | Theft with force/threat |\n",
|
||
"| Theft Over | Theft > $5,000 |\n",
|
||
"| Homicide | Murder/manslaughter |"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|