Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio - Restructure dbt models into domain subdirectories: - shared/ for cross-domain dimensions (dim_time) - staging/toronto/, intermediate/toronto/, marts/toronto/ - Update SQLAlchemy models for raw_toronto schema - Add explicit cross-schema FK relationships for FactRentals - Namespace figure factories under figures/toronto/ - Namespace notebooks under notebooks/toronto/ - Update Makefile with domain-specific targets and env loading - Update all documentation for multi-dashboard structure This enables adding new dashboard projects (e.g., /football, /energy) without structural conflicts or naming collisions. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
199 lines
5.0 KiB
Plaintext
199 lines
5.0 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Crime Trend Line Chart\n",
|
||
"\n",
|
||
"Shows 5-year crime rate trends across Toronto."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_safety` | neighbourhood × year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"from dotenv import load_dotenv\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"\n",
|
||
"# Load .env from project root\n",
|
||
"load_dotenv(\"../../.env\")\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" year,\n",
|
||
" AVG(crime_rate_per_100k) as avg_crime_rate,\n",
|
||
" AVG(assault_rate_per_100k) as avg_assault_rate,\n",
|
||
" AVG(auto_theft_rate_per_100k) as avg_auto_theft_rate,\n",
|
||
" AVG(break_enter_rate_per_100k) as avg_break_enter_rate,\n",
|
||
" SUM(total_incidents) as total_city_incidents,\n",
|
||
" AVG(crime_yoy_change_pct) as avg_yoy_change\n",
|
||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_safety)\n",
|
||
"GROUP BY year\n",
|
||
"ORDER BY year\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} years of crime data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Aggregate by year (city-wide)\n",
|
||
"2. Convert year to datetime\n",
|
||
"3. Melt for multi-line by crime type"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||
"\n",
|
||
"# Melt for multi-line\n",
|
||
"df_melted = df.melt(\n",
|
||
" id_vars=[\"year\", \"date\"],\n",
|
||
" value_vars=[\"avg_assault_rate\", \"avg_auto_theft_rate\", \"avg_break_enter_rate\"],\n",
|
||
" var_name=\"crime_type\",\n",
|
||
" value_name=\"rate_per_100k\",\n",
|
||
")\n",
|
||
"\n",
|
||
"df_melted[\"crime_type\"] = df_melted[\"crime_type\"].map(\n",
|
||
" {\n",
|
||
" \"avg_assault_rate\": \"Assault\",\n",
|
||
" \"avg_auto_theft_rate\": \"Auto Theft\",\n",
|
||
" \"avg_break_enter_rate\": \"Break & Enter\",\n",
|
||
" }\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[[\"year\", \"avg_crime_rate\", \"total_city_incidents\", \"avg_yoy_change\"]]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_price_time_series` (reused for any numeric trend)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"\n",
|
||
"sys.path.insert(0, \"../..\")\n",
|
||
"\n",
|
||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||
"\n",
|
||
"data = df_melted.to_dict(\"records\")\n",
|
||
"\n",
|
||
"fig = create_price_time_series(\n",
|
||
" data=data,\n",
|
||
" date_column=\"date\",\n",
|
||
" price_column=\"rate_per_100k\",\n",
|
||
" group_column=\"crime_type\",\n",
|
||
" title=\"Toronto Crime Trends by Type (5 Years)\",\n",
|
||
")\n",
|
||
"\n",
|
||
"# Remove dollar sign formatting since this is rate data\n",
|
||
"fig.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Overall Trend"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Total crime rate trend\n",
|
||
"total_data = (\n",
|
||
" df[[\"date\", \"avg_crime_rate\"]]\n",
|
||
" .rename(columns={\"avg_crime_rate\": \"total_rate\"})\n",
|
||
" .to_dict(\"records\")\n",
|
||
")\n",
|
||
"\n",
|
||
"fig2 = create_price_time_series(\n",
|
||
" data=total_data,\n",
|
||
" date_column=\"date\",\n",
|
||
" price_column=\"total_rate\",\n",
|
||
" title=\"Toronto Overall Crime Rate Trend\",\n",
|
||
")\n",
|
||
"fig2.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||
"fig2.show()"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|