- Delete obsolete change proposals and bio content source - Rewrite README.md with correct features, data sources, structure - Update PROJECT_REFERENCE.md with accurate status and completed work - Update CLAUDE.md references and sprint status - Add docs/CONTRIBUTING.md developer guide with: - How to add blog posts (frontmatter, markdown) - How to add new pages (Dash routing) - How to add dashboard tabs - How to create figure factories - Branch workflow and code standards Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
9.2 KiB
Developer Guide
Instructions for contributing to the Analytics Portfolio project.
Table of Contents
- Development Setup
- Adding a Blog Post
- Adding a New Page
- Adding a Dashboard Tab
- Creating Figure Factories
- Branch Workflow
- Code Standards
Development Setup
Prerequisites
- Python 3.11+ (via pyenv)
- Docker and Docker Compose
- Git
Initial Setup
# Clone repository
git clone https://gitea.hotserv.cloud/lmiranda/personal-portfolio.git
cd personal-portfolio
# Run setup (creates venv, installs deps, copies .env.example)
make setup
# Start PostgreSQL + PostGIS
make docker-up
# Initialize database
make db-init
# Start development server
make run
The app runs at http://localhost:8050.
Useful Commands
make test # Run tests
make lint # Check code style
make format # Auto-format code
make ci # Run all checks (lint + test)
make dbt-run # Run dbt transformations
make dbt-test # Run dbt tests
Adding a Blog Post
Blog posts are Markdown files with YAML frontmatter, stored in portfolio_app/content/blog/.
Step 1: Create the Markdown File
Create a new file in portfolio_app/content/blog/:
touch portfolio_app/content/blog/your-article-slug.md
The filename becomes the URL slug: /blog/your-article-slug
Step 2: Add Frontmatter
Every blog post requires YAML frontmatter at the top:
---
title: "Your Article Title"
date: "2026-01-17"
description: "A brief description for the article card (1-2 sentences)"
tags:
- data-engineering
- python
- lessons-learned
status: published
---
Your article content starts here...
Required fields:
| Field | Description |
|---|---|
title |
Article title (displayed on cards and page) |
date |
Publication date in YYYY-MM-DD format |
description |
Short summary for article listing cards |
tags |
List of tags (displayed as badges) |
status |
published or draft (drafts are hidden from listing) |
Step 3: Write Content
Use standard Markdown:
## Section Heading
Regular paragraph text.
### Subsection
- Bullet points
- Another point
```python
# Code blocks with syntax highlighting
def example():
return "Hello"
Bold text and italic text.
Blockquotes for callouts
### Step 4: Test Locally
```bash
make run
Visit http://localhost:8050/blog to see the article listing.
Visit http://localhost:8050/blog/your-article-slug for the full article.
Example: Complete Blog Post
---
title: "Building ETL Pipelines with Python"
date: "2026-01-17"
description: "Lessons from building production data pipelines at scale"
tags:
- python
- etl
- data-engineering
status: published
---
When I started building data pipelines, I made every mistake possible...
## The Problem
Most tutorials show toy examples. Real pipelines are different.
### Error Handling
```python
def safe_transform(df: pd.DataFrame) -> pd.DataFrame:
try:
return df.apply(transform_row, axis=1)
except ValueError as e:
logger.error(f"Transform failed: {e}")
raise
Conclusion
Ship something that works, then iterate.
---
## Adding a New Page
Pages use Dash's automatic routing based on file location in `portfolio_app/pages/`.
### Step 1: Create the Page File
```bash
touch portfolio_app/pages/your_page.py
Step 2: Register the Page
Every page must call dash.register_page():
"""Your page description."""
import dash
import dash_mantine_components as dmc
dash.register_page(
__name__,
path="/your-page", # URL path
name="Your Page", # Display name (for nav)
title="Your Page Title" # Browser tab title
)
def layout() -> dmc.Container:
"""Page layout function."""
return dmc.Container(
dmc.Stack(
[
dmc.Title("Your Page", order=1),
dmc.Text("Page content here."),
],
gap="lg",
),
size="md",
py="xl",
)
Step 3: Page with Dynamic Content
For pages with URL parameters:
# pages/blog/article.py
dash.register_page(
__name__,
path_template="/blog/<slug>", # Dynamic parameter
name="Article",
)
def layout(slug: str = "") -> dmc.Container:
"""Layout receives URL parameters as arguments."""
article = get_article(slug)
if not article:
return dmc.Text("Article not found")
return dmc.Container(
dmc.Title(article["meta"]["title"]),
# ...
)
Step 4: Add Navigation (Optional)
To add the page to the sidebar, edit portfolio_app/components/sidebar.py:
NAV_ITEMS = [
{"label": "Home", "href": "/", "icon": "tabler:home"},
{"label": "Your Page", "href": "/your-page", "icon": "tabler:star"},
# ...
]
URL Routing Summary
| File Location | URL |
|---|---|
pages/home.py |
/ (if path="/") |
pages/about.py |
/about |
pages/blog/index.py |
/blog |
pages/blog/article.py |
/blog/<slug> |
pages/toronto/dashboard.py |
/toronto |
Adding a Dashboard Tab
Dashboard tabs are in portfolio_app/pages/toronto/tabs/.
Step 1: Create Tab Layout
# pages/toronto/tabs/your_tab.py
"""Your tab description."""
import dash_mantine_components as dmc
from portfolio_app.figures.choropleth import create_choropleth
from portfolio_app.toronto.demo_data import get_demo_data
def create_your_tab_layout() -> dmc.Stack:
"""Create the tab layout."""
data = get_demo_data()
return dmc.Stack(
[
dmc.Grid(
[
dmc.GridCol(
# Map on left
create_choropleth(data, "your_metric"),
span=8,
),
dmc.GridCol(
# KPI cards on right
create_kpi_cards(data),
span=4,
),
],
),
# Charts below
create_supporting_charts(data),
],
gap="lg",
)
Step 2: Register in Dashboard
Edit pages/toronto/dashboard.py to add the tab:
from portfolio_app.pages.toronto.tabs.your_tab import create_your_tab_layout
# In the tabs list:
dmc.TabsTab("Your Tab", value="your-tab"),
# In the panels:
dmc.TabsPanel(create_your_tab_layout(), value="your-tab"),
Creating Figure Factories
Figure factories are in portfolio_app/figures/. They create reusable Plotly figures.
Pattern
# figures/your_chart.py
"""Your chart type factory."""
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
def create_your_chart(
df: pd.DataFrame,
x_col: str,
y_col: str,
title: str = "",
) -> go.Figure:
"""Create a your_chart figure.
Args:
df: DataFrame with data.
x_col: Column for x-axis.
y_col: Column for y-axis.
title: Optional chart title.
Returns:
Configured Plotly figure.
"""
fig = px.bar(df, x=x_col, y=y_col, title=title)
fig.update_layout(
template="plotly_white",
margin=dict(l=40, r=40, t=40, b=40),
)
return fig
Export from __init__.py
# figures/__init__.py
from .your_chart import create_your_chart
__all__ = [
"create_your_chart",
# ...
]
Branch Workflow
main (production)
↑
staging (pre-production)
↑
development (integration)
↑
feature/XX-description (your work)
Creating a Feature Branch
# Start from development
git checkout development
git pull origin development
# Create feature branch
git checkout -b feature/10-add-new-page
# Work, commit, push
git add .
git commit -m "feat: Add new page"
git push -u origin feature/10-add-new-page
Merging
# Merge into development
git checkout development
git merge feature/10-add-new-page
git push origin development
# Delete feature branch
git branch -d feature/10-add-new-page
git push origin --delete feature/10-add-new-page
Rules:
- Never commit directly to
mainorstaging - Never delete
development - Feature branches are temporary
Code Standards
Type Hints
Use Python 3.10+ style:
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
...
Imports
| Context | Style |
|---|---|
| Same directory | from .module import X |
| Sibling directory | from ..schemas.model import Y |
| External packages | import pandas as pd |
Formatting
make format # Runs ruff formatter
make lint # Checks style
Docstrings
Google style, only for non-obvious functions:
def calculate_score(values: list[float], weights: list[float]) -> float:
"""Calculate weighted score.
Args:
values: Raw metric values.
weights: Weight for each metric.
Returns:
Weighted average score.
"""
...
Questions?
Check CLAUDE.md for AI assistant context and architectural decisions.