Files
personal-portfolio/notebooks

Toronto Neighbourhood Dashboard - Notebooks

Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.

Directory Structure

notebooks/
├── README.md              # This file
├── overview/              # Overview tab visualizations
├── housing/               # Housing tab visualizations
├── safety/                # Safety tab visualizations
├── demographics/          # Demographics tab visualizations
└── amenities/             # Amenities tab visualizations

Notebook Template

Each notebook follows a standard two-section structure:

Section 1: Data Reference

Documents the data pipeline:

  • Source Tables: List of dbt marts/tables used
  • SQL Query: The exact query to fetch data
  • Transformation Steps: Any pandas/python transformations
  • Sample Output: First 10 rows of the result

Section 2: Data Visualization

Documents the figure creation:

  • Figure Factory: Import from portfolio_app.figures
  • Parameters: Key configuration options
  • Rendered Output: The actual visualization

Available Figure Factories

Factory Module Use Case
create_choropleth figures.choropleth Map visualizations
create_ranking_bar figures.bar_charts Top/bottom N rankings
create_stacked_bar figures.bar_charts Category breakdowns
create_scatter figures.scatter Correlation plots
create_radar figures.radar Multi-metric comparisons
create_age_pyramid figures.demographics Age distributions
create_time_series figures.time_series Trend lines

Usage

  1. Start Jupyter from project root:

    jupyter notebook notebooks/
    
  2. Ensure database is running:

    make docker-up
    
  3. Each notebook is self-contained - run all cells top to bottom.

Notebook Naming Convention

{metric}_{chart_type}.ipynb

Examples:

  • livability_choropleth.ipynb
  • crime_trend_line.ipynb
  • age_pyramid.ipynb