Some checks failed
CI / lint-and-test (push) Has been cancelled
Fixes Pylance type error - create_engine() expects str, not str | None. Using direct access raises KeyError if not set, which is correct behavior. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
175 lines
4.1 KiB
Plaintext
175 lines
4.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Amenity Index Choropleth Map\n",
|
|
"\n",
|
|
"Displays total amenities per 1,000 residents across Toronto's 158 neighbourhoods."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. Data Reference\n",
|
|
"\n",
|
|
"### Source Tables\n",
|
|
"\n",
|
|
"| Table | Grain | Key Columns |\n",
|
|
"|-------|-------|-------------|\n",
|
|
"| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
|
"\n",
|
|
"### SQL Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from sqlalchemy import create_engine\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"import os\n",
|
|
"\n",
|
|
"# Load .env from project root\n",
|
|
"load_dotenv('../../.env')\n",
|
|
"\n",
|
|
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
|
"\n",
|
|
"query = \"\"\"\n",
|
|
"SELECT\n",
|
|
" neighbourhood_id,\n",
|
|
" neighbourhood_name,\n",
|
|
" geometry,\n",
|
|
" year,\n",
|
|
" total_amenities_per_1000,\n",
|
|
" amenity_index,\n",
|
|
" amenity_tier,\n",
|
|
" parks_per_1000,\n",
|
|
" schools_per_1000,\n",
|
|
" transit_per_1000,\n",
|
|
" total_amenities,\n",
|
|
" population\n",
|
|
"FROM public_marts.mart_neighbourhood_amenities\n",
|
|
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
|
"ORDER BY total_amenities_per_1000 DESC\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"df = pd.read_sql(query, engine)\n",
|
|
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Transformation Steps\n",
|
|
"\n",
|
|
"1. Filter to most recent year\n",
|
|
"2. Convert geometry to GeoJSON"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import geopandas as gpd\n",
|
|
"import json\n",
|
|
"\n",
|
|
"gdf = gpd.GeoDataFrame(\n",
|
|
" df,\n",
|
|
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
|
" crs='EPSG:4326'\n",
|
|
")\n",
|
|
"\n",
|
|
"geojson = json.loads(gdf.to_json())\n",
|
|
"data = df.drop(columns=['geometry']).to_dict('records')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Sample Output"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df[['neighbourhood_name', 'total_amenities_per_1000', 'amenity_index', 'amenity_tier']].head(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2. Data Visualization\n",
|
|
"\n",
|
|
"### Figure Factory\n",
|
|
"\n",
|
|
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.insert(0, '../..')\n",
|
|
"\n",
|
|
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
|
"\n",
|
|
"fig = create_choropleth_figure(\n",
|
|
" geojson=geojson,\n",
|
|
" data=data,\n",
|
|
" location_key='neighbourhood_id',\n",
|
|
" color_column='total_amenities_per_1000',\n",
|
|
" hover_data=['neighbourhood_name', 'amenity_index', 'parks_per_1000', 'schools_per_1000'],\n",
|
|
" color_scale='Greens',\n",
|
|
" title='Toronto Amenities per 1,000 Population',\n",
|
|
" zoom=10,\n",
|
|
")\n",
|
|
"\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Amenity Tier Interpretation\n",
|
|
"\n",
|
|
"| Tier | Meaning |\n",
|
|
"|------|--------|\n",
|
|
"| 1 | Best served (top 20%) |\n",
|
|
"| 2-4 | Middle tiers |\n",
|
|
"| 5 | Underserved (bottom 20%) |"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.11.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|