Files
personal-portfolio/notebooks/housing/tenure_breakdown_bar.ipynb
lmiranda 92763a17c4
Some checks failed
CI / lint-and-test (push) Has been cancelled
fix: Use os.environ[] instead of .get() for DATABASE_URL
Fixes Pylance type error - create_engine() expects str, not str | None.
Using direct access raises KeyError if not set, which is correct behavior.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:03:23 -05:00

193 lines
5.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Housing Tenure Breakdown Bar Chart\n",
"\n",
"Shows the distribution of owner-occupied vs renter-occupied dwellings across neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"from dotenv import load_dotenv\n",
"import os\n",
"\n",
"# Load .env from project root\n",
"load_dotenv('../../.env')\n",
"\n",
"engine = create_engine(os.environ['DATABASE_URL'])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" pct_owner_occupied,\n",
" pct_renter_occupied,\n",
" income_quintile,\n",
" total_rental_units,\n",
" average_dwelling_value\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
" AND pct_owner_occupied IS NOT NULL\n",
"ORDER BY pct_renter_occupied DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with tenure data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year with tenure data\n",
"2. Melt owner/renter columns for stacked bar\n",
"3. Sort by renter percentage (highest first)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prepare for stacked bar\n",
"df_stacked = df.melt(\n",
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
" var_name='tenure_type',\n",
" value_name='percentage'\n",
")\n",
"\n",
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
" 'pct_owner_occupied': 'Owner',\n",
" 'pct_renter_occupied': 'Renter'\n",
"})\n",
"\n",
"data = df_stacked.to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Highest Renter Neighbourhoods:\")\n",
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'neighbourhood_name'\n",
"- `value_column`: 'percentage'\n",
"- `category_column`: 'tenure_type'\n",
"- `show_percentages`: True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
"\n",
"# Show top 20 by renter percentage\n",
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
"\n",
"fig = create_stacked_bar(\n",
" data=data_filtered,\n",
" x_column='neighbourhood_name',\n",
" value_column='percentage',\n",
" category_column='tenure_type',\n",
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
" show_percentages=True,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### City-Wide Distribution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# City-wide averages\n",
"print(f\"City Average Owner-Occupied: {df['pct_owner_occupied'].mean():.1f}%\")\n",
"print(f\"City Average Renter-Occupied: {df['pct_renter_occupied'].mean():.1f}%\")\n",
"\n",
"# By income quintile\n",
"print(\"\\nTenure by Income Quintile:\")\n",
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}