1
sprint-9-10-figure-factory-pattern
Leo Miranda edited this page 2026-01-23 16:34:06 +00:00

Sprint 9-10 - Figure Factory Pattern for Reusable Charts

Date: 2026-01-17 Tags: plotly, dash, design-patterns, python, visualization, reusability, code-organization


Context

Creating multiple chart types across 5 dashboard tabs, with consistent styling and behavior needed across all visualizations.

Problem

Without a standardized approach, each callback would create figures inline with:

  • Duplicated styling code (colors, fonts, backgrounds)
  • Inconsistent hover templates
  • Hard-to-maintain figure creation logic
  • No reuse between tabs

Solution

Created a figures/ module with factory functions:

figures/
├── __init__.py           # Exports all factories
├── choropleth.py         # Map visualizations
├── bar_charts.py         # ranking_bar, stacked_bar, horizontal_bar
├── scatter.py            # scatter_figure, bubble_chart
├── radar.py              # radar_figure, comparison_radar
└── demographics.py       # age_pyramid, donut_chart

Factory pattern benefits:

  1. Consistent styling - dark theme applied once
  2. Type-safe interfaces - clear parameters for each chart type
  3. Easy testing - factories can be unit tested with sample data
  4. Reusability - same factory used across multiple tabs

Example factory signature:

def create_ranking_bar(
    data: list[dict],
    name_column: str,
    value_column: str,
    title: str = "",
    top_n: int = 5,
    bottom_n: int = 5,
    top_color: str = "#4CAF50",
    bottom_color: str = "#F44336",
) -> go.Figure:

Prevention

  • Create factories early - before implementing callbacks
  • Design generic interfaces - factories should work with any data matching the schema
  • Apply styling in one place - use constants for colors, fonts
  • Test factories independently - with synthetic data before integration