# Wiki.js Python SDK - Comprehensive Improvement Plan **Version**: 2.0 **Created**: 2025-10-22 **Status**: Active Development **Current Version**: v0.1.0 (Phase 1 Complete) --- ## 📋 Executive Summary This document outlines the strategic improvements to evolve the Wiki.js Python SDK from a functional MVP to an enterprise-grade solution. The plan emphasizes: - **Quality First**: Every feature includes comprehensive tests and documentation - **Incremental Delivery**: Each phase delivers measurable value - **Backward Compatibility**: No breaking changes without major version bump - **Developer Experience**: Intuitive APIs with clear error messages ### Key Improvements Overview | Improvement | Phase | Impact | Complexity | |-------------|-------|--------|------------| | Async/Await Support | 2 | HIGH | MEDIUM | | API Expansion (Users, Groups, Assets) | 2 | HIGH | MEDIUM | | Intelligent Caching Layer | 3 | HIGH | MEDIUM | | Batch Operations (GraphQL) | 3 | HIGH | LOW | | Rate Limiting & Throttling | 3 | MEDIUM | LOW | | Circuit Breaker & Retry Logic | 3 | MEDIUM | MEDIUM | | Auto-Pagination Iterators | 2 | MEDIUM | LOW | | Advanced CLI | 4 | MEDIUM | HIGH | | Plugin Architecture | 4 | LOW | HIGH | --- ## 🎯 Phase 2: Essential Features + Async Support **Target Duration**: 3-4 weeks **Target Version**: v0.2.0 **Goal**: Complete API coverage + modern async support ### 2.1 Async/Await Implementation #### 2.1.1 Dual Client Architecture **Objective**: Provide both sync and async clients without breaking existing code **Implementation Strategy**: ```python # Current sync client (unchanged) from wikijs import WikiJSClient # New async client from wikijs.aio import AsyncWikiJSClient # Both share same interface client = WikiJSClient(url, auth) async_client = AsyncWikiJSClient(url, auth) ``` **Tasks**: 1. ✅ **Create `wikijs/aio/` module structure** - `wikijs/aio/__init__.py` - Async exports - `wikijs/aio/client.py` - AsyncWikiJSClient implementation - `wikijs/aio/endpoints.py` - Async endpoint handlers 2. ✅ **Implement AsyncWikiJSClient** - Use `aiohttp.ClientSession` instead of `requests.Session` - Async context manager support (`async with`) - Async methods: `_arequest()`, `_ahandle_response()` - Connection pooling configuration 3. ✅ **Create async endpoint classes** - `AsyncPagesEndpoint` with all CRUD operations - Maintain same method signatures (add `async`/`await`) - Reuse models and exceptions from sync client 4. ✅ **Add async authentication handlers** - `AsyncAPIKeyAuth` - Simple header injection - `AsyncJWTAuth` - Async token refresh logic **Testing Requirements**: - [ ] Unit tests for `AsyncWikiJSClient` (>95% coverage) - [ ] Unit tests for async endpoints (>95% coverage) - [ ] Integration tests with real Wiki.js instance - [ ] Concurrent request tests (100+ simultaneous requests) - [ ] Performance benchmarks (async vs sync) - [ ] Error handling tests (timeouts, connection errors) **Documentation Requirements**: - [ ] `docs/async_usage.md` - Comprehensive async guide - [ ] Update `README.md` with async examples - [ ] Update API reference with async methods - [ ] Add async examples to `examples/async_basic_usage.py` - [ ] Migration guide from sync to async **Success Criteria**: - [ ] Async client achieves >3x throughput vs sync (100 concurrent requests) - [ ] All sync features available in async variant - [ ] Zero breaking changes to existing sync API - [ ] Documentation covers 100% of async functionality - [ ] All tests pass with >95% coverage **Estimated Effort**: 12-15 hours, 40-50 AI sessions --- #### 2.1.2 Async Context Managers & Resource Cleanup **Objective**: Proper async resource management **Implementation**: ```python # Context manager pattern async with AsyncWikiJSClient(url, auth) as client: page = await client.pages.get(123) # Automatic cleanup on exit # Manual management client = AsyncWikiJSClient(url, auth) try: page = await client.pages.get(123) finally: await client.close() ``` **Tasks**: 1. Implement `__aenter__` and `__aexit__` methods 2. Proper session cleanup in async context 3. Connection pool lifecycle management 4. Graceful shutdown handling **Testing Requirements**: - [ ] Resource leak tests (ensure sessions close) - [ ] Exception handling in context managers - [ ] Concurrent context manager usage **Estimated Effort**: 3-4 hours, 10-15 AI sessions --- ### 2.2 API Expansion #### 2.2.1 Users API Implementation **Objective**: Complete user management capabilities **GraphQL Queries to Implement**: ```graphql # List users query { users { list { id, name, email, isActive } } } # Get user query($id: Int!) { users { single(id: $id) { id, name, email, groups } } } # Create user mutation($email: String!, $name: String!) { users { create(email: $email, name: $name) { responseResult { succeeded } } } } # Update user mutation($id: Int!, $name: String!) { users { update(id: $id, name: $name) { responseResult { succeeded } } } } # Delete user mutation($id: Int!) { users { delete(id: $id) { responseResult { succeeded } } } ``` **File Structure**: ``` wikijs/endpoints/users.py # Sync implementation wikijs/aio/endpoints/users.py # Async implementation wikijs/models/user.py # User data models tests/endpoints/test_users.py # Sync tests tests/aio/test_users.py # Async tests ``` **Tasks**: 1. ✅ **Create User models** (`wikijs/models/user.py`) - `User` - Complete user data model - `UserGroup` - User group membership - `UserPermissions` - Permission model 2. ✅ **Implement UsersEndpoint** (`wikijs/endpoints/users.py`) - `list(limit, offset, filter)` - List users with pagination - `get(user_id)` - Get single user by ID - `create(email, name, password, groups)` - Create new user - `update(user_id, **kwargs)` - Update user - `delete(user_id)` - Delete user - `search(query)` - Search users by name/email 3. ✅ **Implement AsyncUsersEndpoint** (async variant) 4. ✅ **Add to client** - Register in `WikiJSClient.users` **Testing Requirements**: - [ ] Unit tests for UsersEndpoint (>95% coverage) - [ ] Unit tests for User models - [ ] Integration tests (CRUD operations) - [ ] Permission validation tests - [ ] Edge cases (invalid emails, duplicate users) **Documentation Requirements**: - [ ] `docs/api/users.md` - Complete Users API reference - [ ] Usage examples in `examples/user_management.py` - [ ] Update main README with Users API section **Success Criteria**: - [ ] All CRUD operations functional - [ ] Model validation prevents invalid data - [ ] Error handling provides clear feedback - [ ] Tests achieve >95% coverage **Estimated Effort**: 8-10 hours, 30-35 AI sessions --- #### 2.2.2 Groups API Implementation **Objective**: Group and permission management **Key Operations**: ```python # Group management groups = client.groups.list() group = client.groups.get(group_id) new_group = client.groups.create(name="Editors", permissions=["read", "write"]) client.groups.update(group_id, name="Senior Editors") client.groups.delete(group_id) # Member management client.groups.add_user(group_id, user_id) client.groups.remove_user(group_id, user_id) members = client.groups.list_members(group_id) ``` **Tasks**: 1. Create Group models (`wikijs/models/group.py`) 2. Implement GroupsEndpoint (`wikijs/endpoints/groups.py`) 3. Implement AsyncGroupsEndpoint (async variant) 4. Add permission validation logic **Testing Requirements**: - [ ] Unit tests for GroupsEndpoint (>95% coverage) - [ ] Integration tests for group-user relationships - [ ] Permission inheritance tests **Documentation Requirements**: - [ ] `docs/api/groups.md` - Groups API reference - [ ] Examples in `examples/group_management.py` **Success Criteria**: - [ ] Group CRUD operations work correctly - [ ] User-group relationships properly managed - [ ] Permission validation prevents invalid operations **Estimated Effort**: 6-8 hours, 25-30 AI sessions --- #### 2.2.3 Assets API Implementation **Objective**: File upload and asset management **Key Operations**: ```python # Upload asset asset = client.assets.upload( file_path="/path/to/image.png", folder="/images", optimize=True ) # List assets assets = client.assets.list(folder="/images", kind="image") # Get asset info asset = client.assets.get(asset_id) # Delete asset client.assets.delete(asset_id) # Download asset content = client.assets.download(asset_id) ``` **Tasks**: 1. Create Asset models (`wikijs/models/asset.py`) 2. Implement AssetsEndpoint with multipart upload 3. Handle large file uploads (streaming) 4. Async variant for concurrent uploads **Testing Requirements**: - [ ] Unit tests for AssetsEndpoint - [ ] File upload tests (various formats) - [ ] Large file handling tests (>10MB) - [ ] Concurrent upload tests (async) **Documentation Requirements**: - [ ] `docs/api/assets.md` - Assets API reference - [ ] Examples in `examples/asset_upload.py` **Success Criteria**: - [ ] Support common file formats (images, PDFs, docs) - [ ] Large file uploads work reliably - [ ] Progress tracking for uploads **Estimated Effort**: 8-10 hours, 30-35 AI sessions --- #### 2.2.4 Auto-Pagination Support **Objective**: Pythonic iteration over paginated results **Implementation**: ```python # Current (manual pagination) offset = 0 all_pages = [] while True: batch = client.pages.list(limit=50, offset=offset) if not batch: break all_pages.extend(batch) offset += 50 # New (auto-pagination) all_pages = list(client.pages.iter_all()) # Or iterate lazily for page in client.pages.iter_all(batch_size=50): process_page(page) ``` **Tasks**: 1. Add `iter_all()` method to all list endpoints 2. Implement lazy iteration with `yield` 3. Support custom batch sizes 4. Async iterator support (`async for`) **Testing Requirements**: - [ ] Iterator tests for each endpoint - [ ] Large dataset tests (1000+ items) - [ ] Memory efficiency tests - [ ] Async iterator tests **Success Criteria**: - [ ] Memory efficient (doesn't load all at once) - [ ] Works with all paginated endpoints - [ ] Async variant available **Estimated Effort**: 4-5 hours, 15-20 AI sessions --- ### Phase 2 Quality Gates **Code Quality**: - [ ] All code follows Black formatting - [ ] Type hints on 100% of public APIs - [ ] Docstrings on 100% of public methods - [ ] MyPy strict mode passes - [ ] Flake8 with no errors - [ ] Bandit security scan passes **Testing**: - [ ] Overall test coverage >90% - [ ] All integration tests pass - [ ] Performance benchmarks established - [ ] Async performance >3x sync for 100 concurrent requests - [ ] No memory leaks detected **Documentation**: - [ ] All new APIs documented in `docs/api/` - [ ] Examples for each major feature - [ ] Migration guides updated - [ ] CHANGELOG.md updated with all changes - [ ] README.md updated with new capabilities **Review Checkpoints**: 1. **After Async Implementation**: Code review + performance benchmarks 2. **After Each API Expansion**: Integration tests + docs review 3. **Before Release**: Full regression test + security audit **Release Criteria for v0.2.0**: - [ ] All Phase 2 tasks completed - [ ] All quality gates passed - [ ] Beta testing with real users (minimum 3 users) - [ ] No critical or high-severity bugs - [ ] Documentation comprehensive and accurate --- ## ⚡ Phase 3: Reliability & Performance **Target Duration**: 3-4 weeks **Target Version**: v0.3.0 **Goal**: Production-grade reliability and performance ### 3.1 Intelligent Caching Layer #### 3.1.1 Cache Architecture **Objective**: Pluggable caching with multiple backends **Design**: ```python from wikijs import WikiJSClient from wikijs.cache import MemoryCache, RedisCache, FileCache # No caching (default - backward compatible) client = WikiJSClient(url, auth) # Memory cache (development) client = WikiJSClient(url, auth, cache=MemoryCache(ttl=300, max_size=1000)) # Redis cache (production) client = WikiJSClient(url, auth, cache=RedisCache( host="localhost", ttl=600, key_prefix="wikijs:" )) # File cache (persistent) client = WikiJSClient(url, auth, cache=FileCache( cache_dir="/tmp/wikijs_cache", ttl=3600 )) ``` **File Structure**: ``` wikijs/cache/ ├── __init__.py # Cache exports ├── base.py # CacheBackend abstract base class ├── memory.py # MemoryCache implementation ├── redis.py # RedisCache implementation ├── file.py # FileCache implementation └── strategies.py # Cache invalidation strategies tests/cache/ ├── test_memory_cache.py ├── test_redis_cache.py ├── test_file_cache.py └── test_invalidation.py ``` **Tasks**: 1. ✅ **Create cache base classes** (`wikijs/cache/base.py`) ```python from abc import ABC, abstractmethod from typing import Any, Optional class CacheBackend(ABC): @abstractmethod def get(self, key: str) -> Optional[Any]: """Get value from cache.""" @abstractmethod def set(self, key: str, value: Any, ttl: Optional[int] = None) -> None: """Set value in cache.""" @abstractmethod def delete(self, key: str) -> None: """Delete key from cache.""" @abstractmethod def clear(self) -> None: """Clear all cache entries.""" ``` 2. ✅ **Implement MemoryCache** (LRU with TTL) - Use `collections.OrderedDict` for LRU - Timestamp-based TTL expiration - Thread-safe operations with `threading.Lock` - Configurable max size (default: 1000 entries) 3. ✅ **Implement RedisCache** - Use `redis-py` library - Automatic serialization with `pickle` - Connection pooling - Optional key prefix for multi-tenant support 4. ✅ **Implement FileCache** - Store as JSON/pickle files - Directory-based organization - Automatic cleanup of expired entries - Disk space management 5. ✅ **Integrate caching into client** - Cache key generation (URL + params hash) - Cache middleware in `_request()` method - Only cache GET requests (not POST/PUT/DELETE) - Respect Cache-Control headers if present **Cache Invalidation Strategy**: ```python # Time-based (TTL) cache = MemoryCache(ttl=300) # 5 minutes # Event-based invalidation client.pages.update(page_id, content="New") # Auto-invalidate cached page # Manual invalidation client.cache.clear() # Clear all client.cache.delete(f"pages:{page_id}") # Clear specific ``` **Testing Requirements**: - [ ] Unit tests for each cache backend (>95% coverage) - [ ] Cache hit/miss rate tests - [ ] TTL expiration tests - [ ] Concurrent access tests (thread safety) - [ ] Cache invalidation tests - [ ] Memory usage tests (no leaks) - [ ] Performance benchmarks (cache vs no-cache) **Documentation Requirements**: - [ ] `docs/caching.md` - Comprehensive caching guide - [ ] Configuration examples for each backend - [ ] Best practices for cache invalidation - [ ] Performance tuning guide **Success Criteria**: - [ ] Cache hit ratio >80% for typical usage patterns - [ ] No race conditions in concurrent scenarios - [ ] Memory usage stays bounded (LRU eviction works) - [ ] Redis cache handles connection failures gracefully - [ ] Clear performance improvement (>50% faster for cached requests) **Estimated Effort**: 10-12 hours, 35-40 AI sessions --- ### 3.2 Batch Operations with GraphQL Optimization #### 3.2.1 GraphQL Batch Queries **Objective**: Single request for multiple operations **Implementation**: ```python # Instead of N requests (slow) pages = [client.pages.get(id) for id in [1, 2, 3, 4, 5]] # Single batched request (fast) pages = client.pages.get_many([1, 2, 3, 4, 5]) # Batch create results = client.pages.create_many([ {"title": "Page 1", "path": "/page-1", "content": "Content 1"}, {"title": "Page 2", "path": "/page-2", "content": "Content 2"}, {"title": "Page 3", "path": "/page-3", "content": "Content 3"}, ]) # Batch update results = client.pages.update_many([ {"id": 1, "content": "New content 1"}, {"id": 2, "content": "New content 2"}, ]) # Batch delete results = client.pages.delete_many([1, 2, 3, 4, 5]) ``` **GraphQL Batch Query Structure**: ```graphql query GetMultiplePages { page1: pages { single(id: 1) { id, title, content } } page2: pages { single(id: 2) { id, title, content } } page3: pages { single(id: 3) { id, title, content } } } mutation CreateMultiplePages { page1: pages { create(title: "Page 1", path: "/page-1") { responseResult } } page2: pages { create(title: "Page 2", path: "/page-2") { responseResult } } } ``` **Tasks**: 1. ✅ **Create batch query builder** (`wikijs/utils/batch.py`) - Generate aliased GraphQL queries - Handle maximum batch size limits (default: 50) - Automatic splitting for large batches 2. ✅ **Add batch methods to PagesEndpoint** - `get_many(ids: List[int]) -> List[Page]` - `create_many(pages: List[Dict]) -> List[Page]` - `update_many(updates: List[Dict]) -> List[Page]` - `delete_many(ids: List[int]) -> List[bool]` 3. ✅ **Error handling for partial failures** - Return results + errors separately - Continue processing even if some operations fail ```python result = client.pages.create_many([...]) print(f"Created: {len(result.success)}") print(f"Failed: {len(result.errors)}") for error in result.errors: print(f" - {error.index}: {error.message}") ``` 4. ✅ **Extend to other endpoints** - Users batch operations - Groups batch operations - Assets batch upload **Testing Requirements**: - [ ] Batch operation tests (various sizes) - [ ] Partial failure handling tests - [ ] Performance benchmarks (batch vs sequential) - [ ] Large batch tests (1000+ items with auto-splitting) - [ ] Concurrent batch operation tests **Documentation Requirements**: - [ ] `docs/batch_operations.md` - Batch operations guide - [ ] Performance comparison examples - [ ] Error handling examples **Success Criteria**: - [ ] Batch operations >10x faster than sequential for 50+ items - [ ] Graceful handling of partial failures - [ ] Clear error messages for failed operations - [ ] Automatic splitting for batches exceeding limits **Estimated Effort**: 8-10 hours, 30-35 AI sessions --- ### 3.3 Rate Limiting & Throttling #### 3.3.1 Client-Side Rate Limiting **Objective**: Prevent API abuse and respect server limits **Implementation**: ```python from wikijs import WikiJSClient from wikijs.middleware import RateLimiter # Simple rate limiting client = WikiJSClient( url, auth, rate_limiter=RateLimiter(requests_per_second=10) ) # Advanced rate limiting client = WikiJSClient( url, auth, rate_limiter=RateLimiter( requests_per_second=10, burst_size=20, # Allow bursts up to 20 requests strategy="token_bucket" # or "sliding_window" ) ) # Per-endpoint rate limits client = WikiJSClient( url, auth, rate_limiter=RateLimiter( default_rps=10, endpoint_limits={ "/graphql": 5, # Slower for GraphQL "/assets": 2, # Even slower for uploads } ) ) ``` **Tasks**: 1. ✅ **Create rate limiter middleware** (`wikijs/middleware/rate_limiter.py`) - Token bucket algorithm implementation - Sliding window algorithm implementation - Async-compatible (works with both sync and async clients) 2. ✅ **Integrate into client** (`_request()` method) - Pre-request rate limit check - Automatic waiting if limit exceeded - Rate limit headers tracking (if provided by server) 3. ✅ **Add rate limit exceeded handling** - Custom exception `RateLimitExceeded` - Configurable behavior (wait, raise, callback) ```python # Wait automatically (default) client = WikiJSClient(url, auth, rate_limiter=RateLimiter(...)) # Raise exception immediately client = WikiJSClient( url, auth, rate_limiter=RateLimiter(..., on_limit="raise") ) # Custom callback def on_rate_limit(wait_time): print(f"Rate limited, waiting {wait_time}s...") client = WikiJSClient( url, auth, rate_limiter=RateLimiter(..., on_limit=on_rate_limit) ) ``` **Testing Requirements**: - [ ] Rate limiter algorithm tests - [ ] Integration tests with client - [ ] Concurrent request rate limiting tests - [ ] Burst handling tests **Documentation Requirements**: - [ ] `docs/rate_limiting.md` - Rate limiting guide - [ ] Configuration examples - [ ] Best practices for production usage **Success Criteria**: - [ ] Accurately enforces configured rate limits - [ ] Works seamlessly with both sync and async clients - [ ] No performance overhead when rate limits not hit - [ ] Clear feedback when rate limited **Estimated Effort**: 5-6 hours, 20-25 AI sessions --- ### 3.4 Circuit Breaker & Enhanced Retry Logic #### 3.4.1 Circuit Breaker Pattern **Objective**: Prevent cascading failures and improve resilience **Implementation**: ```python from wikijs import WikiJSClient from wikijs.middleware import CircuitBreaker, RetryStrategy # Circuit breaker configuration client = WikiJSClient( url, auth, circuit_breaker=CircuitBreaker( failure_threshold=5, # Open after 5 failures recovery_timeout=60, # Try again after 60s success_threshold=2, # Close after 2 successes on_open=lambda: print("Circuit opened!") ) ) # Enhanced retry strategy client = WikiJSClient( url, auth, retry_strategy=RetryStrategy( max_retries=5, backoff="exponential", # or "linear", "constant" initial_delay=1, # Start with 1s max_delay=60, # Cap at 60s jitter=True, # Add randomness retry_on=[500, 502, 503, 504, 429], # Status codes ) ) # Combined resilience client = WikiJSClient( url, auth, retry_strategy=RetryStrategy(...), circuit_breaker=CircuitBreaker(...) ) ``` **Circuit Breaker States**: ``` CLOSED (normal) -> OPEN (failing) -> HALF_OPEN (testing) -> CLOSED/OPEN ^ | |___________________________________________________________| ``` **Tasks**: 1. ✅ **Implement CircuitBreaker** (`wikijs/middleware/circuit_breaker.py`) - State machine (CLOSED, OPEN, HALF_OPEN) - Failure/success counters - Automatic state transitions - Thread-safe implementation 2. ✅ **Enhance retry strategy** (`wikijs/middleware/retry.py`) - Exponential backoff with jitter - Configurable retry conditions - Respect Retry-After headers - Maximum retry time limit 3. ✅ **Integrate into client** - Wrap `_request()` method - Circuit breaker check before request - Retry logic on failures - Proper exception propagation 4. ✅ **Add metrics and monitoring** - Circuit breaker state changes logging - Retry attempt logging - Failure rate tracking ```python # Get circuit breaker stats stats = client.circuit_breaker.stats() print(f"State: {stats.state}") print(f"Failures: {stats.failure_count}") print(f"Last failure: {stats.last_failure_time}") ``` **Testing Requirements**: - [ ] Circuit breaker state transition tests - [ ] Retry strategy tests (all backoff types) - [ ] Integration tests with failing server - [ ] Concurrent request tests - [ ] Metrics accuracy tests **Documentation Requirements**: - [ ] `docs/resilience.md` - Resilience patterns guide - [ ] Circuit breaker configuration guide - [ ] Retry strategy best practices **Success Criteria**: - [ ] Circuit breaker prevents cascading failures - [ ] Retry logic handles transient failures gracefully - [ ] System recovers automatically when service restores - [ ] Clear logging of failure patterns **Estimated Effort**: 8-10 hours, 30-35 AI sessions --- ### Phase 3 Quality Gates **Performance Requirements**: - [ ] Caching improves response time by >50% for repeated requests - [ ] Batch operations >10x faster than sequential for 50+ items - [ ] Rate limiting adds <1ms overhead per request - [ ] Circuit breaker detection time <100ms - [ ] No memory leaks in long-running processes **Reliability Requirements**: - [ ] System handles 1000+ concurrent requests without failure - [ ] Circuit breaker successfully prevents cascading failures - [ ] Cache invalidation prevents stale data - [ ] Rate limiting prevents API abuse - [ ] Retry logic handles transient failures (tested with chaos engineering) **Testing**: - [ ] Load tests with 10,000+ requests - [ ] Chaos engineering tests (random failures) - [ ] Long-running stability tests (24+ hours) - [ ] Memory profiling shows no leaks - [ ] All quality gates from Phase 2 still passing **Documentation**: - [ ] Performance tuning guide - [ ] Production deployment guide - [ ] Monitoring and observability guide - [ ] Troubleshooting guide **Review Checkpoints**: 1. **After Caching Implementation**: Performance benchmarks + load tests 2. **After Batch Operations**: Integration tests + performance comparison 3. **After Resilience Features**: Chaos engineering tests + reliability validation 4. **Before Release**: Full production readiness review **Release Criteria for v0.3.0**: - [ ] All Phase 3 tasks completed - [ ] All performance and reliability requirements met - [ ] Production deployment tested with pilot users - [ ] Zero critical bugs, <3 high-severity bugs - [ ] Complete production deployment guide --- ## 🌟 Phase 4: Advanced Features **Target Duration**: 4-5 weeks **Target Version**: v1.0.0 **Goal**: Enterprise-grade features and ecosystem ### 4.1 Advanced CLI **Objective**: Comprehensive command-line interface **Features**: ```bash # Interactive mode wikijs interactive --url https://wiki.example.com --api-key TOKEN # Page operations wikijs pages list --filter "title:API" wikijs pages get 123 wikijs pages create --title "New Page" --content-file content.md wikijs pages update 123 --title "Updated Title" wikijs pages delete 123 # Bulk operations wikijs pages import --directory ./pages wikijs pages export --output ./backup # User management wikijs users list wikijs users create --email user@example.com --name "John Doe" # Configuration wikijs config init # Create config file wikijs config validate # Validate config # Health check wikijs health check wikijs health stats ``` **Tasks**: 1. Implement CLI with Click framework 2. Add rich formatting for output 3. Interactive mode with prompt_toolkit 4. Progress bars for long operations 5. Configuration file support **Estimated Effort**: 12-15 hours --- ### 4.2 Plugin Architecture **Objective**: Extensible middleware and custom providers **Features**: ```python from wikijs import WikiJSClient from wikijs.plugins import LoggingPlugin, MetricsPlugin # Custom plugin class CustomAuthPlugin: def before_request(self, method, url, **kwargs): # Custom logic before request pass def after_request(self, response): # Custom logic after response pass client = WikiJSClient( url, auth, plugins=[ LoggingPlugin(level="DEBUG"), MetricsPlugin(backend="prometheus"), CustomAuthPlugin() ] ) ``` **Estimated Effort**: 10-12 hours --- ### 4.3 Webhook Support **Objective**: React to Wiki.js events **Features**: ```python from wikijs.webhooks import WebhookServer # Create webhook server server = WebhookServer(secret="webhook-secret") @server.on("page.created") def on_page_created(event): print(f"New page created: {event.page.title}") @server.on("page.updated") def on_page_updated(event): print(f"Page updated: {event.page.title}") # Start server server.run(host="0.0.0.0", port=8080) ``` **Estimated Effort**: 8-10 hours --- ### Phase 4 Quality Gates **Feature Completeness**: - [ ] CLI covers all major operations - [ ] Plugin system supports common use cases - [ ] Webhook handling is reliable and secure **Enterprise Readiness**: - [ ] Multi-tenancy support - [ ] Advanced security features - [ ] Comprehensive audit logging - [ ] Enterprise documentation **Release Criteria for v1.0.0**: - [ ] Feature parity with official SDKs - [ ] Production-proven with multiple enterprises - [ ] Complete ecosystem (CLI, plugins, webhooks) - [ ] Comprehensive documentation and tutorials - [ ] Active community support --- ## 📊 Implementation Tracking ### Development Velocity Metrics | Metric | Target | Tracking Method | |--------|--------|-----------------| | Test Coverage | >90% | pytest-cov | | Code Quality Score | >8.5/10 | SonarQube/CodeClimate | | Documentation Coverage | 100% | Manual review | | API Response Time | <100ms | Performance benchmarks | | Bug Resolution Time | <48h | GitHub Issues | ### Progress Tracking Template ```yaml Phase_2_Progress: Status: "NOT_STARTED" # or IN_PROGRESS, COMPLETE Completion: 0% Task_2.1_Async: Status: "NOT_STARTED" Completion: 0% Started: null Completed: null Notes: [] Task_2.2_API_Expansion: Status: "NOT_STARTED" Completion: 0% Subtask_2.2.1_Users: Status: "NOT_STARTED" Completion: 0% Subtask_2.2.2_Groups: Status: "NOT_STARTED" Completion: 0% Subtask_2.2.3_Assets: Status: "NOT_STARTED" Completion: 0% ``` --- ## 🔄 Development Workflow ### 1. Phase Kickoff - [ ] Review phase objectives and requirements - [ ] Set up tracking in CLAUDE.md - [ ] Create feature branches for major components - [ ] Schedule review checkpoints ### 2. During Development - [ ] Update progress tracking after each task - [ ] Run tests continuously (TDD approach) - [ ] Update documentation as features are built - [ ] Conduct peer reviews for critical code - [ ] Performance benchmarking for new features ### 3. Phase Completion - [ ] All tasks completed and tested - [ ] Documentation comprehensive and reviewed - [ ] Performance benchmarks meet targets - [ ] Security scan passes - [ ] Beta testing with real users - [ ] Retrospective meeting - [ ] Release preparation --- ## 📝 Testing Strategy ### Test Pyramid ``` E2E Tests (5%) / \ Integration (15%) / \ Unit Tests (80%) ``` ### Testing Requirements by Phase **Phase 2**: - Unit: >95% coverage - Integration: All CRUD operations - Performance: Async vs sync benchmarks - Security: Auth validation **Phase 3**: - Load: 10,000+ requests - Chaos: Random failure injection - Stability: 24+ hour runs - Cache: Hit rate >80% **Phase 4**: - End-to-End: Complete workflows - CLI: All commands tested - Plugins: Custom plugin scenarios --- ## 📖 Documentation Strategy ### Documentation Hierarchy 1. **README.md** - Quick start and overview 2. **docs/getting_started.md** - Detailed installation and setup 3. **docs/api/** - Complete API reference 4. **docs/guides/** - Feature-specific guides 5. **examples/** - Working code examples 6. **CHANGELOG.md** - Version history 7. **CONTRIBUTING.md** - Development guide ### Documentation Requirements Each feature must include: - [ ] API reference with all parameters documented - [ ] At least 3 usage examples (basic, intermediate, advanced) - [ ] Common pitfalls and troubleshooting - [ ] Performance considerations - [ ] Security best practices --- ## 🚀 Release Strategy ### Pre-Release Checklist **Code Quality**: - [ ] All tests pass - [ ] Coverage >90% - [ ] No critical/high security issues - [ ] Performance benchmarks meet targets - [ ] Code review completed **Documentation**: - [ ] All APIs documented - [ ] Examples updated - [ ] CHANGELOG.md updated - [ ] Migration guide (if breaking changes) - [ ] README.md updated **Testing**: - [ ] Integration tests pass - [ ] Load tests pass - [ ] Beta testing complete - [ ] No blocking bugs **Process**: - [ ] Version number updated - [ ] Git tag created - [ ] GitHub release notes prepared - [ ] PyPI package prepared ### Release Communication 1. **Pre-release** (1 week before): - Announce on GitHub Discussions - Share release notes draft - Request community feedback 2. **Release day**: - Publish to GitHub - Update documentation site - Social media announcement - Community notification 3. **Post-release** (1 week after): - Monitor for critical bugs - Respond to user feedback - Plan hotfix if needed --- ## 🎯 Success Metrics ### Phase 2 Success Metrics - [ ] Async client achieves >3x throughput - [ ] All Wiki.js APIs have coverage - [ ] >100 downloads in first month - [ ] >10 GitHub stars - [ ] Zero critical bugs after 2 weeks ### Phase 3 Success Metrics - [ ] Cache hit rate >80% - [ ] Batch operations >10x faster - [ ] 99.9% uptime in production - [ ] <100ms p95 response time - [ ] >500 downloads/month ### Phase 4 Success Metrics - [ ] CLI adoption by >30% of users - [ ] >5 community plugins - [ ] >1000 downloads/month - [ ] >50 GitHub stars - [ ] Enterprise customer deployments --- ## 🤝 Community Engagement ### Feedback Channels - GitHub Issues for bugs - GitHub Discussions for features - Discord/Slack for real-time chat - Monthly community calls ### Contribution Opportunities - Bug fixes and improvements - New API endpoints - Documentation improvements - Example projects - Plugin development --- ## 📅 Timeline Summary | Phase | Duration | Target Date | Key Deliverables | |-------|----------|-------------|------------------| | Phase 1 | ✅ Complete | ✅ Done | MVP with Pages API | | Phase 2 | 3-4 weeks | Week 8 | Async + Full API Coverage | | Phase 3 | 3-4 weeks | Week 12 | Production Reliability | | Phase 4 | 4-5 weeks | Week 17 | Enterprise Features | | **Total** | **~17 weeks** | **~4 months** | **v1.0.0 Release** | --- ## 🎓 Key Takeaways 1. **Quality First**: Every feature includes tests and documentation 2. **Incremental Value**: Each phase delivers real user value 3. **Backward Compatible**: No breaking changes without major version 4. **Community Driven**: Engage users throughout development 5. **Production Ready**: Focus on reliability, performance, security --- **This improvement plan ensures the Wiki.js Python SDK evolves into a world-class, enterprise-ready solution while maintaining high quality standards throughout development.** **Next Steps**: 1. Review and approve this plan 2. Update CLAUDE.md with Phase 2 details 3. Begin Phase 2 implementation 4. Establish continuous progress tracking