Created IMPROVEMENT_PLAN_2.md with detailed implementation roadmap: Phase 2.5 (1 week - CRITICAL): - Fix 4 failing tests (mock configuration) - Increase coverage from 81% to 90%+ - Add missing dependencies (pydantic[email], aiohttp) - Comprehensive test validation Phase 2.6 (2-3 weeks - HIGH): - Structured logging (JSON + text formats) - Metrics & telemetry (requests, latency, errors) - Rate limiting (token bucket algorithm) - PyPI publication - Security policy (SECURITY.md) Phase 3 (3-4 weeks - MEDIUM): - Advanced CLI tool with Click + Rich - Auto-generated API docs with Sphinx - Performance benchmarks - Migration guides from competitors Phase 4 (4-6 weeks - FUTURE): - Plugin architecture - Webhook server support - GraphQL query builder - Redis cache backend Each task includes: - Priority level and estimated time - Implementation strategy with code examples - Success criteria and validation steps - Documentation and testing requirements Organized improvement plans into dedicated docs/plans/ folder. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
34 KiB
Wiki.js Python SDK - Comprehensive Improvement Plan
Version: 2.0 Created: 2025-10-22 Status: Active Development Current Version: v0.1.0 (Phase 1 Complete)
📋 Executive Summary
This document outlines the strategic improvements to evolve the Wiki.js Python SDK from a functional MVP to an enterprise-grade solution. The plan emphasizes:
- Quality First: Every feature includes comprehensive tests and documentation
- Incremental Delivery: Each phase delivers measurable value
- Backward Compatibility: No breaking changes without major version bump
- Developer Experience: Intuitive APIs with clear error messages
Key Improvements Overview
| Improvement | Phase | Impact | Complexity |
|---|---|---|---|
| Async/Await Support | 2 | HIGH | MEDIUM |
| API Expansion (Users, Groups, Assets) | 2 | HIGH | MEDIUM |
| Intelligent Caching Layer | 3 | HIGH | MEDIUM |
| Batch Operations (GraphQL) | 3 | HIGH | LOW |
| Rate Limiting & Throttling | 3 | MEDIUM | LOW |
| Circuit Breaker & Retry Logic | 3 | MEDIUM | MEDIUM |
| Auto-Pagination Iterators | 2 | MEDIUM | LOW |
| Advanced CLI | 4 | MEDIUM | HIGH |
| Plugin Architecture | 4 | LOW | HIGH |
🎯 Phase 2: Essential Features + Async Support
Target Duration: 3-4 weeks Target Version: v0.2.0 Goal: Complete API coverage + modern async support
2.1 Async/Await Implementation
2.1.1 Dual Client Architecture
Objective: Provide both sync and async clients without breaking existing code
Implementation Strategy:
# Current sync client (unchanged)
from wikijs import WikiJSClient
# New async client
from wikijs.aio import AsyncWikiJSClient
# Both share same interface
client = WikiJSClient(url, auth)
async_client = AsyncWikiJSClient(url, auth)
Tasks:
-
✅ Create
wikijs/aio/module structurewikijs/aio/__init__.py- Async exportswikijs/aio/client.py- AsyncWikiJSClient implementationwikijs/aio/endpoints.py- Async endpoint handlers
-
✅ Implement AsyncWikiJSClient
- Use
aiohttp.ClientSessioninstead ofrequests.Session - Async context manager support (
async with) - Async methods:
_arequest(),_ahandle_response() - Connection pooling configuration
- Use
-
✅ Create async endpoint classes
AsyncPagesEndpointwith all CRUD operations- Maintain same method signatures (add
async/await) - Reuse models and exceptions from sync client
-
✅ Add async authentication handlers
AsyncAPIKeyAuth- Simple header injectionAsyncJWTAuth- Async token refresh logic
Testing Requirements:
- Unit tests for
AsyncWikiJSClient(>95% coverage) - Unit tests for async endpoints (>95% coverage)
- Integration tests with real Wiki.js instance
- Concurrent request tests (100+ simultaneous requests)
- Performance benchmarks (async vs sync)
- Error handling tests (timeouts, connection errors)
Documentation Requirements:
docs/async_usage.md- Comprehensive async guide- Update
README.mdwith async examples - Update API reference with async methods
- Add async examples to
examples/async_basic_usage.py - Migration guide from sync to async
Success Criteria:
- Async client achieves >3x throughput vs sync (100 concurrent requests)
- All sync features available in async variant
- Zero breaking changes to existing sync API
- Documentation covers 100% of async functionality
- All tests pass with >95% coverage
Estimated Effort: 12-15 hours, 40-50 AI sessions
2.1.2 Async Context Managers & Resource Cleanup
Objective: Proper async resource management
Implementation:
# Context manager pattern
async with AsyncWikiJSClient(url, auth) as client:
page = await client.pages.get(123)
# Automatic cleanup on exit
# Manual management
client = AsyncWikiJSClient(url, auth)
try:
page = await client.pages.get(123)
finally:
await client.close()
Tasks:
- Implement
__aenter__and__aexit__methods - Proper session cleanup in async context
- Connection pool lifecycle management
- Graceful shutdown handling
Testing Requirements:
- Resource leak tests (ensure sessions close)
- Exception handling in context managers
- Concurrent context manager usage
Estimated Effort: 3-4 hours, 10-15 AI sessions
2.2 API Expansion
2.2.1 Users API Implementation
Objective: Complete user management capabilities
GraphQL Queries to Implement:
# List users
query { users { list { id, name, email, isActive } } }
# Get user
query($id: Int!) { users { single(id: $id) { id, name, email, groups } } }
# Create user
mutation($email: String!, $name: String!) {
users { create(email: $email, name: $name) { responseResult { succeeded } } }
}
# Update user
mutation($id: Int!, $name: String!) {
users { update(id: $id, name: $name) { responseResult { succeeded } } }
}
# Delete user
mutation($id: Int!) { users { delete(id: $id) { responseResult { succeeded } } }
File Structure:
wikijs/endpoints/users.py # Sync implementation
wikijs/aio/endpoints/users.py # Async implementation
wikijs/models/user.py # User data models
tests/endpoints/test_users.py # Sync tests
tests/aio/test_users.py # Async tests
Tasks:
-
✅ Create User models (
wikijs/models/user.py)User- Complete user data modelUserGroup- User group membershipUserPermissions- Permission model
-
✅ Implement UsersEndpoint (
wikijs/endpoints/users.py)list(limit, offset, filter)- List users with paginationget(user_id)- Get single user by IDcreate(email, name, password, groups)- Create new userupdate(user_id, **kwargs)- Update userdelete(user_id)- Delete usersearch(query)- Search users by name/email
-
✅ Implement AsyncUsersEndpoint (async variant)
-
✅ Add to client - Register in
WikiJSClient.users
Testing Requirements:
- Unit tests for UsersEndpoint (>95% coverage)
- Unit tests for User models
- Integration tests (CRUD operations)
- Permission validation tests
- Edge cases (invalid emails, duplicate users)
Documentation Requirements:
docs/api/users.md- Complete Users API reference- Usage examples in
examples/user_management.py - Update main README with Users API section
Success Criteria:
- All CRUD operations functional
- Model validation prevents invalid data
- Error handling provides clear feedback
- Tests achieve >95% coverage
Estimated Effort: 8-10 hours, 30-35 AI sessions
2.2.2 Groups API Implementation
Objective: Group and permission management
Key Operations:
# Group management
groups = client.groups.list()
group = client.groups.get(group_id)
new_group = client.groups.create(name="Editors", permissions=["read", "write"])
client.groups.update(group_id, name="Senior Editors")
client.groups.delete(group_id)
# Member management
client.groups.add_user(group_id, user_id)
client.groups.remove_user(group_id, user_id)
members = client.groups.list_members(group_id)
Tasks:
- Create Group models (
wikijs/models/group.py) - Implement GroupsEndpoint (
wikijs/endpoints/groups.py) - Implement AsyncGroupsEndpoint (async variant)
- Add permission validation logic
Testing Requirements:
- Unit tests for GroupsEndpoint (>95% coverage)
- Integration tests for group-user relationships
- Permission inheritance tests
Documentation Requirements:
docs/api/groups.md- Groups API reference- Examples in
examples/group_management.py
Success Criteria:
- Group CRUD operations work correctly
- User-group relationships properly managed
- Permission validation prevents invalid operations
Estimated Effort: 6-8 hours, 25-30 AI sessions
2.2.3 Assets API Implementation
Objective: File upload and asset management
Key Operations:
# Upload asset
asset = client.assets.upload(
file_path="/path/to/image.png",
folder="/images",
optimize=True
)
# List assets
assets = client.assets.list(folder="/images", kind="image")
# Get asset info
asset = client.assets.get(asset_id)
# Delete asset
client.assets.delete(asset_id)
# Download asset
content = client.assets.download(asset_id)
Tasks:
- Create Asset models (
wikijs/models/asset.py) - Implement AssetsEndpoint with multipart upload
- Handle large file uploads (streaming)
- Async variant for concurrent uploads
Testing Requirements:
- Unit tests for AssetsEndpoint
- File upload tests (various formats)
- Large file handling tests (>10MB)
- Concurrent upload tests (async)
Documentation Requirements:
docs/api/assets.md- Assets API reference- Examples in
examples/asset_upload.py
Success Criteria:
- Support common file formats (images, PDFs, docs)
- Large file uploads work reliably
- Progress tracking for uploads
Estimated Effort: 8-10 hours, 30-35 AI sessions
2.2.4 Auto-Pagination Support
Objective: Pythonic iteration over paginated results
Implementation:
# Current (manual pagination)
offset = 0
all_pages = []
while True:
batch = client.pages.list(limit=50, offset=offset)
if not batch:
break
all_pages.extend(batch)
offset += 50
# New (auto-pagination)
all_pages = list(client.pages.iter_all())
# Or iterate lazily
for page in client.pages.iter_all(batch_size=50):
process_page(page)
Tasks:
- Add
iter_all()method to all list endpoints - Implement lazy iteration with
yield - Support custom batch sizes
- Async iterator support (
async for)
Testing Requirements:
- Iterator tests for each endpoint
- Large dataset tests (1000+ items)
- Memory efficiency tests
- Async iterator tests
Success Criteria:
- Memory efficient (doesn't load all at once)
- Works with all paginated endpoints
- Async variant available
Estimated Effort: 4-5 hours, 15-20 AI sessions
Phase 2 Quality Gates
Code Quality:
- All code follows Black formatting
- Type hints on 100% of public APIs
- Docstrings on 100% of public methods
- MyPy strict mode passes
- Flake8 with no errors
- Bandit security scan passes
Testing:
- Overall test coverage >90%
- All integration tests pass
- Performance benchmarks established
- Async performance >3x sync for 100 concurrent requests
- No memory leaks detected
Documentation:
- All new APIs documented in
docs/api/ - Examples for each major feature
- Migration guides updated
- CHANGELOG.md updated with all changes
- README.md updated with new capabilities
Review Checkpoints:
- After Async Implementation: Code review + performance benchmarks
- After Each API Expansion: Integration tests + docs review
- Before Release: Full regression test + security audit
Release Criteria for v0.2.0:
- All Phase 2 tasks completed
- All quality gates passed
- Beta testing with real users (minimum 3 users)
- No critical or high-severity bugs
- Documentation comprehensive and accurate
⚡ Phase 3: Reliability & Performance
Target Duration: 3-4 weeks Target Version: v0.3.0 Goal: Production-grade reliability and performance
3.1 Intelligent Caching Layer
3.1.1 Cache Architecture
Objective: Pluggable caching with multiple backends
Design:
from wikijs import WikiJSClient
from wikijs.cache import MemoryCache, RedisCache, FileCache
# No caching (default - backward compatible)
client = WikiJSClient(url, auth)
# Memory cache (development)
client = WikiJSClient(url, auth, cache=MemoryCache(ttl=300, max_size=1000))
# Redis cache (production)
client = WikiJSClient(url, auth, cache=RedisCache(
host="localhost",
ttl=600,
key_prefix="wikijs:"
))
# File cache (persistent)
client = WikiJSClient(url, auth, cache=FileCache(
cache_dir="/tmp/wikijs_cache",
ttl=3600
))
File Structure:
wikijs/cache/
├── __init__.py # Cache exports
├── base.py # CacheBackend abstract base class
├── memory.py # MemoryCache implementation
├── redis.py # RedisCache implementation
├── file.py # FileCache implementation
└── strategies.py # Cache invalidation strategies
tests/cache/
├── test_memory_cache.py
├── test_redis_cache.py
├── test_file_cache.py
└── test_invalidation.py
Tasks:
-
✅ Create cache base classes (
wikijs/cache/base.py)from abc import ABC, abstractmethod from typing import Any, Optional class CacheBackend(ABC): @abstractmethod def get(self, key: str) -> Optional[Any]: """Get value from cache.""" @abstractmethod def set(self, key: str, value: Any, ttl: Optional[int] = None) -> None: """Set value in cache.""" @abstractmethod def delete(self, key: str) -> None: """Delete key from cache.""" @abstractmethod def clear(self) -> None: """Clear all cache entries.""" -
✅ Implement MemoryCache (LRU with TTL)
- Use
collections.OrderedDictfor LRU - Timestamp-based TTL expiration
- Thread-safe operations with
threading.Lock - Configurable max size (default: 1000 entries)
- Use
-
✅ Implement RedisCache
- Use
redis-pylibrary - Automatic serialization with
pickle - Connection pooling
- Optional key prefix for multi-tenant support
- Use
-
✅ Implement FileCache
- Store as JSON/pickle files
- Directory-based organization
- Automatic cleanup of expired entries
- Disk space management
-
✅ Integrate caching into client
- Cache key generation (URL + params hash)
- Cache middleware in
_request()method - Only cache GET requests (not POST/PUT/DELETE)
- Respect Cache-Control headers if present
Cache Invalidation Strategy:
# Time-based (TTL)
cache = MemoryCache(ttl=300) # 5 minutes
# Event-based invalidation
client.pages.update(page_id, content="New") # Auto-invalidate cached page
# Manual invalidation
client.cache.clear() # Clear all
client.cache.delete(f"pages:{page_id}") # Clear specific
Testing Requirements:
- Unit tests for each cache backend (>95% coverage)
- Cache hit/miss rate tests
- TTL expiration tests
- Concurrent access tests (thread safety)
- Cache invalidation tests
- Memory usage tests (no leaks)
- Performance benchmarks (cache vs no-cache)
Documentation Requirements:
docs/caching.md- Comprehensive caching guide- Configuration examples for each backend
- Best practices for cache invalidation
- Performance tuning guide
Success Criteria:
- Cache hit ratio >80% for typical usage patterns
- No race conditions in concurrent scenarios
- Memory usage stays bounded (LRU eviction works)
- Redis cache handles connection failures gracefully
- Clear performance improvement (>50% faster for cached requests)
Estimated Effort: 10-12 hours, 35-40 AI sessions
3.2 Batch Operations with GraphQL Optimization
3.2.1 GraphQL Batch Queries
Objective: Single request for multiple operations
Implementation:
# Instead of N requests (slow)
pages = [client.pages.get(id) for id in [1, 2, 3, 4, 5]]
# Single batched request (fast)
pages = client.pages.get_many([1, 2, 3, 4, 5])
# Batch create
results = client.pages.create_many([
{"title": "Page 1", "path": "/page-1", "content": "Content 1"},
{"title": "Page 2", "path": "/page-2", "content": "Content 2"},
{"title": "Page 3", "path": "/page-3", "content": "Content 3"},
])
# Batch update
results = client.pages.update_many([
{"id": 1, "content": "New content 1"},
{"id": 2, "content": "New content 2"},
])
# Batch delete
results = client.pages.delete_many([1, 2, 3, 4, 5])
GraphQL Batch Query Structure:
query GetMultiplePages {
page1: pages { single(id: 1) { id, title, content } }
page2: pages { single(id: 2) { id, title, content } }
page3: pages { single(id: 3) { id, title, content } }
}
mutation CreateMultiplePages {
page1: pages { create(title: "Page 1", path: "/page-1") { responseResult } }
page2: pages { create(title: "Page 2", path: "/page-2") { responseResult } }
}
Tasks:
-
✅ Create batch query builder (
wikijs/utils/batch.py)- Generate aliased GraphQL queries
- Handle maximum batch size limits (default: 50)
- Automatic splitting for large batches
-
✅ Add batch methods to PagesEndpoint
get_many(ids: List[int]) -> List[Page]create_many(pages: List[Dict]) -> List[Page]update_many(updates: List[Dict]) -> List[Page]delete_many(ids: List[int]) -> List[bool]
-
✅ Error handling for partial failures
- Return results + errors separately
- Continue processing even if some operations fail
result = client.pages.create_many([...]) print(f"Created: {len(result.success)}") print(f"Failed: {len(result.errors)}") for error in result.errors: print(f" - {error.index}: {error.message}") -
✅ Extend to other endpoints
- Users batch operations
- Groups batch operations
- Assets batch upload
Testing Requirements:
- Batch operation tests (various sizes)
- Partial failure handling tests
- Performance benchmarks (batch vs sequential)
- Large batch tests (1000+ items with auto-splitting)
- Concurrent batch operation tests
Documentation Requirements:
docs/batch_operations.md- Batch operations guide- Performance comparison examples
- Error handling examples
Success Criteria:
- Batch operations >10x faster than sequential for 50+ items
- Graceful handling of partial failures
- Clear error messages for failed operations
- Automatic splitting for batches exceeding limits
Estimated Effort: 8-10 hours, 30-35 AI sessions
3.3 Rate Limiting & Throttling
3.3.1 Client-Side Rate Limiting
Objective: Prevent API abuse and respect server limits
Implementation:
from wikijs import WikiJSClient
from wikijs.middleware import RateLimiter
# Simple rate limiting
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(requests_per_second=10)
)
# Advanced rate limiting
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(
requests_per_second=10,
burst_size=20, # Allow bursts up to 20 requests
strategy="token_bucket" # or "sliding_window"
)
)
# Per-endpoint rate limits
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(
default_rps=10,
endpoint_limits={
"/graphql": 5, # Slower for GraphQL
"/assets": 2, # Even slower for uploads
}
)
)
Tasks:
-
✅ Create rate limiter middleware (
wikijs/middleware/rate_limiter.py)- Token bucket algorithm implementation
- Sliding window algorithm implementation
- Async-compatible (works with both sync and async clients)
-
✅ Integrate into client (
_request()method)- Pre-request rate limit check
- Automatic waiting if limit exceeded
- Rate limit headers tracking (if provided by server)
-
✅ Add rate limit exceeded handling
- Custom exception
RateLimitExceeded - Configurable behavior (wait, raise, callback)
# Wait automatically (default) client = WikiJSClient(url, auth, rate_limiter=RateLimiter(...)) # Raise exception immediately client = WikiJSClient( url, auth, rate_limiter=RateLimiter(..., on_limit="raise") ) # Custom callback def on_rate_limit(wait_time): print(f"Rate limited, waiting {wait_time}s...") client = WikiJSClient( url, auth, rate_limiter=RateLimiter(..., on_limit=on_rate_limit) ) - Custom exception
Testing Requirements:
- Rate limiter algorithm tests
- Integration tests with client
- Concurrent request rate limiting tests
- Burst handling tests
Documentation Requirements:
docs/rate_limiting.md- Rate limiting guide- Configuration examples
- Best practices for production usage
Success Criteria:
- Accurately enforces configured rate limits
- Works seamlessly with both sync and async clients
- No performance overhead when rate limits not hit
- Clear feedback when rate limited
Estimated Effort: 5-6 hours, 20-25 AI sessions
3.4 Circuit Breaker & Enhanced Retry Logic
3.4.1 Circuit Breaker Pattern
Objective: Prevent cascading failures and improve resilience
Implementation:
from wikijs import WikiJSClient
from wikijs.middleware import CircuitBreaker, RetryStrategy
# Circuit breaker configuration
client = WikiJSClient(
url,
auth,
circuit_breaker=CircuitBreaker(
failure_threshold=5, # Open after 5 failures
recovery_timeout=60, # Try again after 60s
success_threshold=2, # Close after 2 successes
on_open=lambda: print("Circuit opened!")
)
)
# Enhanced retry strategy
client = WikiJSClient(
url,
auth,
retry_strategy=RetryStrategy(
max_retries=5,
backoff="exponential", # or "linear", "constant"
initial_delay=1, # Start with 1s
max_delay=60, # Cap at 60s
jitter=True, # Add randomness
retry_on=[500, 502, 503, 504, 429], # Status codes
)
)
# Combined resilience
client = WikiJSClient(
url,
auth,
retry_strategy=RetryStrategy(...),
circuit_breaker=CircuitBreaker(...)
)
Circuit Breaker States:
CLOSED (normal) -> OPEN (failing) -> HALF_OPEN (testing) -> CLOSED/OPEN
^ |
|___________________________________________________________|
Tasks:
-
✅ Implement CircuitBreaker (
wikijs/middleware/circuit_breaker.py)- State machine (CLOSED, OPEN, HALF_OPEN)
- Failure/success counters
- Automatic state transitions
- Thread-safe implementation
-
✅ Enhance retry strategy (
wikijs/middleware/retry.py)- Exponential backoff with jitter
- Configurable retry conditions
- Respect Retry-After headers
- Maximum retry time limit
-
✅ Integrate into client
- Wrap
_request()method - Circuit breaker check before request
- Retry logic on failures
- Proper exception propagation
- Wrap
-
✅ Add metrics and monitoring
- Circuit breaker state changes logging
- Retry attempt logging
- Failure rate tracking
# Get circuit breaker stats stats = client.circuit_breaker.stats() print(f"State: {stats.state}") print(f"Failures: {stats.failure_count}") print(f"Last failure: {stats.last_failure_time}")
Testing Requirements:
- Circuit breaker state transition tests
- Retry strategy tests (all backoff types)
- Integration tests with failing server
- Concurrent request tests
- Metrics accuracy tests
Documentation Requirements:
docs/resilience.md- Resilience patterns guide- Circuit breaker configuration guide
- Retry strategy best practices
Success Criteria:
- Circuit breaker prevents cascading failures
- Retry logic handles transient failures gracefully
- System recovers automatically when service restores
- Clear logging of failure patterns
Estimated Effort: 8-10 hours, 30-35 AI sessions
Phase 3 Quality Gates
Performance Requirements:
- Caching improves response time by >50% for repeated requests
- Batch operations >10x faster than sequential for 50+ items
- Rate limiting adds <1ms overhead per request
- Circuit breaker detection time <100ms
- No memory leaks in long-running processes
Reliability Requirements:
- System handles 1000+ concurrent requests without failure
- Circuit breaker successfully prevents cascading failures
- Cache invalidation prevents stale data
- Rate limiting prevents API abuse
- Retry logic handles transient failures (tested with chaos engineering)
Testing:
- Load tests with 10,000+ requests
- Chaos engineering tests (random failures)
- Long-running stability tests (24+ hours)
- Memory profiling shows no leaks
- All quality gates from Phase 2 still passing
Documentation:
- Performance tuning guide
- Production deployment guide
- Monitoring and observability guide
- Troubleshooting guide
Review Checkpoints:
- After Caching Implementation: Performance benchmarks + load tests
- After Batch Operations: Integration tests + performance comparison
- After Resilience Features: Chaos engineering tests + reliability validation
- Before Release: Full production readiness review
Release Criteria for v0.3.0:
- All Phase 3 tasks completed
- All performance and reliability requirements met
- Production deployment tested with pilot users
- Zero critical bugs, <3 high-severity bugs
- Complete production deployment guide
🌟 Phase 4: Advanced Features
Target Duration: 4-5 weeks Target Version: v1.0.0 Goal: Enterprise-grade features and ecosystem
4.1 Advanced CLI
Objective: Comprehensive command-line interface
Features:
# Interactive mode
wikijs interactive --url https://wiki.example.com --api-key TOKEN
# Page operations
wikijs pages list --filter "title:API"
wikijs pages get 123
wikijs pages create --title "New Page" --content-file content.md
wikijs pages update 123 --title "Updated Title"
wikijs pages delete 123
# Bulk operations
wikijs pages import --directory ./pages
wikijs pages export --output ./backup
# User management
wikijs users list
wikijs users create --email user@example.com --name "John Doe"
# Configuration
wikijs config init # Create config file
wikijs config validate # Validate config
# Health check
wikijs health check
wikijs health stats
Tasks:
- Implement CLI with Click framework
- Add rich formatting for output
- Interactive mode with prompt_toolkit
- Progress bars for long operations
- Configuration file support
Estimated Effort: 12-15 hours
4.2 Plugin Architecture
Objective: Extensible middleware and custom providers
Features:
from wikijs import WikiJSClient
from wikijs.plugins import LoggingPlugin, MetricsPlugin
# Custom plugin
class CustomAuthPlugin:
def before_request(self, method, url, **kwargs):
# Custom logic before request
pass
def after_request(self, response):
# Custom logic after response
pass
client = WikiJSClient(
url,
auth,
plugins=[
LoggingPlugin(level="DEBUG"),
MetricsPlugin(backend="prometheus"),
CustomAuthPlugin()
]
)
Estimated Effort: 10-12 hours
4.3 Webhook Support
Objective: React to Wiki.js events
Features:
from wikijs.webhooks import WebhookServer
# Create webhook server
server = WebhookServer(secret="webhook-secret")
@server.on("page.created")
def on_page_created(event):
print(f"New page created: {event.page.title}")
@server.on("page.updated")
def on_page_updated(event):
print(f"Page updated: {event.page.title}")
# Start server
server.run(host="0.0.0.0", port=8080)
Estimated Effort: 8-10 hours
Phase 4 Quality Gates
Feature Completeness:
- CLI covers all major operations
- Plugin system supports common use cases
- Webhook handling is reliable and secure
Enterprise Readiness:
- Multi-tenancy support
- Advanced security features
- Comprehensive audit logging
- Enterprise documentation
Release Criteria for v1.0.0:
- Feature parity with official SDKs
- Production-proven with multiple enterprises
- Complete ecosystem (CLI, plugins, webhooks)
- Comprehensive documentation and tutorials
- Active community support
📊 Implementation Tracking
Development Velocity Metrics
| Metric | Target | Tracking Method |
|---|---|---|
| Test Coverage | >90% | pytest-cov |
| Code Quality Score | >8.5/10 | SonarQube/CodeClimate |
| Documentation Coverage | 100% | Manual review |
| API Response Time | <100ms | Performance benchmarks |
| Bug Resolution Time | <48h | GitHub Issues |
Progress Tracking Template
Phase_2_Progress:
Status: "NOT_STARTED" # or IN_PROGRESS, COMPLETE
Completion: 0%
Task_2.1_Async:
Status: "NOT_STARTED"
Completion: 0%
Started: null
Completed: null
Notes: []
Task_2.2_API_Expansion:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.1_Users:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.2_Groups:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.3_Assets:
Status: "NOT_STARTED"
Completion: 0%
🔄 Development Workflow
1. Phase Kickoff
- Review phase objectives and requirements
- Set up tracking in CLAUDE.md
- Create feature branches for major components
- Schedule review checkpoints
2. During Development
- Update progress tracking after each task
- Run tests continuously (TDD approach)
- Update documentation as features are built
- Conduct peer reviews for critical code
- Performance benchmarking for new features
3. Phase Completion
- All tasks completed and tested
- Documentation comprehensive and reviewed
- Performance benchmarks meet targets
- Security scan passes
- Beta testing with real users
- Retrospective meeting
- Release preparation
📝 Testing Strategy
Test Pyramid
E2E Tests (5%)
/ \
Integration (15%)
/ \
Unit Tests (80%)
Testing Requirements by Phase
Phase 2:
- Unit: >95% coverage
- Integration: All CRUD operations
- Performance: Async vs sync benchmarks
- Security: Auth validation
Phase 3:
- Load: 10,000+ requests
- Chaos: Random failure injection
- Stability: 24+ hour runs
- Cache: Hit rate >80%
Phase 4:
- End-to-End: Complete workflows
- CLI: All commands tested
- Plugins: Custom plugin scenarios
📖 Documentation Strategy
Documentation Hierarchy
- README.md - Quick start and overview
- docs/getting_started.md - Detailed installation and setup
- docs/api/ - Complete API reference
- docs/guides/ - Feature-specific guides
- examples/ - Working code examples
- CHANGELOG.md - Version history
- CONTRIBUTING.md - Development guide
Documentation Requirements
Each feature must include:
- API reference with all parameters documented
- At least 3 usage examples (basic, intermediate, advanced)
- Common pitfalls and troubleshooting
- Performance considerations
- Security best practices
🚀 Release Strategy
Pre-Release Checklist
Code Quality:
- All tests pass
- Coverage >90%
- No critical/high security issues
- Performance benchmarks meet targets
- Code review completed
Documentation:
- All APIs documented
- Examples updated
- CHANGELOG.md updated
- Migration guide (if breaking changes)
- README.md updated
Testing:
- Integration tests pass
- Load tests pass
- Beta testing complete
- No blocking bugs
Process:
- Version number updated
- Git tag created
- GitHub release notes prepared
- PyPI package prepared
Release Communication
-
Pre-release (1 week before):
- Announce on GitHub Discussions
- Share release notes draft
- Request community feedback
-
Release day:
- Publish to GitHub
- Update documentation site
- Social media announcement
- Community notification
-
Post-release (1 week after):
- Monitor for critical bugs
- Respond to user feedback
- Plan hotfix if needed
🎯 Success Metrics
Phase 2 Success Metrics
- Async client achieves >3x throughput
- All Wiki.js APIs have coverage
- >100 downloads in first month
- >10 GitHub stars
- Zero critical bugs after 2 weeks
Phase 3 Success Metrics
- Cache hit rate >80%
- Batch operations >10x faster
- 99.9% uptime in production
- <100ms p95 response time
- >500 downloads/month
Phase 4 Success Metrics
- CLI adoption by >30% of users
- >5 community plugins
- >1000 downloads/month
- >50 GitHub stars
- Enterprise customer deployments
🤝 Community Engagement
Feedback Channels
- GitHub Issues for bugs
- GitHub Discussions for features
- Discord/Slack for real-time chat
- Monthly community calls
Contribution Opportunities
- Bug fixes and improvements
- New API endpoints
- Documentation improvements
- Example projects
- Plugin development
📅 Timeline Summary
| Phase | Duration | Target Date | Key Deliverables |
|---|---|---|---|
| Phase 1 | ✅ Complete | ✅ Done | MVP with Pages API |
| Phase 2 | 3-4 weeks | Week 8 | Async + Full API Coverage |
| Phase 3 | 3-4 weeks | Week 12 | Production Reliability |
| Phase 4 | 4-5 weeks | Week 17 | Enterprise Features |
| Total | ~17 weeks | ~4 months | v1.0.0 Release |
🎓 Key Takeaways
- Quality First: Every feature includes tests and documentation
- Incremental Value: Each phase delivers real user value
- Backward Compatible: No breaking changes without major version
- Community Driven: Engage users throughout development
- Production Ready: Focus on reliability, performance, security
This improvement plan ensures the Wiki.js Python SDK evolves into a world-class, enterprise-ready solution while maintaining high quality standards throughout development.
Next Steps:
- Review and approve this plan
- Update CLAUDE.md with Phase 2 details
- Begin Phase 2 implementation
- Establish continuous progress tracking