This comprehensive update transforms Job Forge from a generic MVP concept to a production-ready Python/FastAPI web application prototype with complete documentation, testing infrastructure, and deployment procedures. ## 🏗️ Architecture Changes - Updated all documentation to reflect Python/FastAPI + Dash + PostgreSQL stack - Transformed from MVP concept to deployable web application prototype - Added comprehensive multi-tenant architecture with Row Level Security (RLS) - Integrated Claude API and OpenAI API for AI-powered document generation ## 📚 Documentation Overhaul - **CLAUDE.md**: Complete rewrite as project orchestrator for 4 specialized agents - **README.md**: New centralized documentation hub with organized navigation - **API Specification**: Updated with comprehensive FastAPI endpoint documentation - **Database Design**: Enhanced schema with RLS policies and performance optimization - **Architecture Guide**: Transformed to web application focus with deployment strategy ## 🏗️ New Documentation Structure - **docs/development/**: Python/FastAPI coding standards and development guidelines - **docs/infrastructure/**: Docker setup and server deployment procedures - **docs/testing/**: Comprehensive QA procedures with pytest integration - **docs/ai/**: AI prompt templates and examples (preserved from original) ## 🎯 Team Structure Updates - **.claude/agents/**: 4 new Python/FastAPI specialized agents - simplified_technical_lead.md: Architecture and technical guidance - fullstack_developer.md: FastAPI backend + Dash frontend implementation - simplified_qa.md: pytest testing and quality assurance - simplified_devops.md: Docker deployment and server infrastructure ## 🧪 Testing Infrastructure - **pytest.ini**: Complete pytest configuration with coverage requirements - **tests/conftest.py**: Comprehensive test fixtures and database setup - **tests/unit/**: Example unit tests for auth and application services - **tests/integration/**: API integration test examples - Support for async testing, AI service mocking, and database testing ## 🧹 Cleanup - Removed 9 duplicate/outdated documentation files - Eliminated conflicting technology references (Node.js/TypeScript) - Consolidated overlapping content into comprehensive guides - Cleaned up project structure for professional development workflow ## 🚀 Production Ready Features - Docker containerization for development and production - Server deployment procedures for prototype hosting - Security best practices with JWT authentication and RLS - Performance optimization with database indexing and caching - Comprehensive testing strategy with quality gates This update establishes Job Forge as a professional Python/FastAPI web application prototype ready for development and deployment. 🤖 Generated with Claude Code (https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
25 KiB
25 KiB
Job Forge - Python/FastAPI Web Application Architecture
Version: 1.0.0 Prototype
Status: Development Phase 1
Date: August 2025
Scope: AI-powered job application management web application
Target: Prototype development for server deployment
📋 Application Scope & Objectives
Core Web Application Features
- User Authentication: JWT-based secure authentication system
- Job Application Management: Full CRUD operations for job applications
- AI-Powered Document Generation: Automated cover letter and resume optimization
- Web Interface: Modern responsive web interface using Dash + Mantine
- Multi-tenant Architecture: Secure user data isolation with RLS
Development Goals
- Deploy functional prototype to personal server
- Validate AI workflow effectiveness for job applications
- Test web application performance and user experience
- Establish scalable architecture for future enhancements
- Demonstrate full-stack Python/FastAPI capabilities
🏗️ Web Application Architecture
System Overview
graph TB
subgraph "Web Frontend (Dash + Mantine)"
UI[Dashboard Interface]
FORMS[Application Forms]
EDITOR[Document Editor]
VIEWER[Document Viewer]
end
subgraph "Backend API (FastAPI)"
AUTH[JWT Authentication]
CRUD[Application CRUD]
AI[AI Service Layer]
FILES[Document Management]
end
subgraph "AI Agents"
RESEARCH[Research Agent]
RESUME[Resume Optimizer]
COVER[Cover Letter Generator]
end
subgraph "Data Storage"
PG[(PostgreSQL + pgvector)]
FILES[Document Storage]
end
subgraph "External AI"
CLAUDE[Claude AI]
OPENAI[OpenAI Embeddings]
end
UI --> AUTH
FORMS --> CRUD
EDITOR --> FILES
VIEWER --> FILES
CRUD --> AI
AI --> RESEARCH
AI --> RESUME
AI --> COVER
CRUD --> PG
FILES --> PG
RESEARCH --> CLAUDE
RESUME --> CLAUDE
COVER --> CLAUDE
AI --> OPENAI
🔐 User Authentication (Web Application)
JWT-Based Authentication System
class AuthenticationService:
"""JWT-based authentication for web application"""
async def register_user(self, user_data: UserCreate) -> User:
"""Register new user account with validation"""
async def authenticate_user(self, credentials: UserLogin) -> AuthResult:
"""Authenticate user and return JWT access token"""
async def verify_token(self, token: str) -> User:
"""Verify JWT token and return authenticated user"""
async def refresh_token(self, refresh_token: str) -> AuthResult:
"""Refresh JWT access token"""
def create_access_token(self, user_id: str) -> str:
"""Create JWT access token with expiration"""
Database Schema (Users)
-- User table with enhanced security
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
first_name VARCHAR(100) NOT NULL,
last_name VARCHAR(100) NOT NULL,
is_active BOOLEAN DEFAULT TRUE,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Enable row level security for multi-tenancy
ALTER TABLE users ENABLE ROW LEVEL SECURITY;
-- Create index for performance
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_active ON users(is_active);
📋 Job Application Module
Core Application Workflow
class ApplicationService:
"""Core job application management"""
async def create_application(self, user_id: str, job_data: JobApplicationData) -> Application:
"""Create new job application with job description and URL"""
async def get_user_applications(self, user_id: str) -> List[Application]:
"""Get all applications for user"""
async def get_application(self, user_id: str, app_id: str) -> Application:
"""Get specific application with documents"""
async def update_application_status(self, user_id: str, app_id: str, status: str) -> None:
"""Update application status through workflow phases"""
Application Data Model
class JobApplicationData(BaseModel):
"""Input data for creating new application"""
job_url: Optional[str] = None
job_description: str
company_name: str
role_title: str
location: Optional[str] = None
priority_level: str = "medium"
additional_context: Optional[str] = None
class Application(BaseModel):
"""Core application entity"""
id: str
user_id: str
name: str # Auto-generated: company_role_YYYY_MM_DD
company_name: str
role_title: str
job_url: Optional[str]
job_description: str
status: ApplicationStatus # draft, research_complete, resume_ready, cover_letter_ready
# Phase completion tracking
research_completed: bool = False
resume_optimized: bool = False
cover_letter_generated: bool = False
created_at: datetime
updated_at: datetime
Database Schema (Applications)
CREATE TABLE applications (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id) ON DELETE CASCADE,
name VARCHAR(255) NOT NULL,
company_name VARCHAR(255) NOT NULL,
role_title VARCHAR(255) NOT NULL,
job_url TEXT,
job_description TEXT NOT NULL,
location VARCHAR(255),
priority_level VARCHAR(20) DEFAULT 'medium',
status VARCHAR(50) DEFAULT 'draft',
-- Phase tracking
research_completed BOOLEAN DEFAULT FALSE,
resume_optimized BOOLEAN DEFAULT FALSE,
cover_letter_generated BOOLEAN DEFAULT FALSE,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
ALTER TABLE applications ENABLE ROW LEVEL SECURITY;
CREATE POLICY user_applications_policy ON applications
FOR ALL TO application_user
USING (user_id = current_setting('app.current_user_id')::UUID);
🤖 AI Processing Workflow
3-Phase AI Orchestrator
class AIOrchestrator:
"""Orchestrates the 3-phase AI workflow"""
def __init__(self, research_agent, resume_optimizer, cover_letter_generator):
self.research_agent = research_agent
self.resume_optimizer = resume_optimizer
self.cover_letter_generator = cover_letter_generator
async def execute_research_phase(self, application_id: str) -> ResearchReport:
"""Phase 1: Job analysis and company research"""
async def execute_resume_optimization(self, application_id: str) -> OptimizedResume:
"""Phase 2: Resume optimization based on research"""
async def execute_cover_letter_generation(self, application_id: str, user_context: str) -> CoverLetter:
"""Phase 3: Cover letter generation with user inputs"""
Phase 1: Research Agent
class ResearchAgent:
"""Job description analysis and company research"""
async def analyze_job_description(self, job_desc: str) -> JobAnalysis:
"""Extract requirements, skills, and key information"""
async def research_company_info(self, company_name: str) -> CompanyIntelligence:
"""Basic company research and insights"""
async def generate_strategic_positioning(self, job_analysis: JobAnalysis) -> StrategicPositioning:
"""Determine optimal candidate positioning"""
async def create_research_report(self, job_desc: str, company_name: str) -> ResearchReport:
"""Complete research phase output"""
Phase 2: Resume Optimizer
class ResumeOptimizer:
"""Resume optimization based on job requirements"""
async def analyze_resume_portfolio(self, user_id: str) -> ResumePortfolio:
"""Load and analyze user's resume library"""
async def optimize_resume_for_job(self, portfolio: ResumePortfolio, research: ResearchReport) -> OptimizedResume:
"""Create job-specific optimized resume"""
async def validate_resume_optimization(self, resume: OptimizedResume) -> ValidationReport:
"""Ensure resume meets requirements and constraints"""
Phase 3: Cover Letter Generator
class CoverLetterGenerator:
"""Cover letter generation with user context"""
async def analyze_writing_style(self, user_id: str) -> WritingStyle:
"""Analyze user's writing patterns from reference documents"""
async def generate_cover_letter(self, research: ResearchReport, resume: OptimizedResume,
user_context: str, writing_style: WritingStyle) -> CoverLetter:
"""Generate personalized cover letter"""
async def validate_cover_letter(self, cover_letter: CoverLetter) -> ValidationReport:
"""Ensure cover letter quality and authenticity"""
📄 Document Management
Document Storage & Retrieval
class DocumentService:
"""Handle document storage and retrieval"""
async def save_document(self, user_id: str, app_id: str, doc_type: str, content: str) -> None:
"""Save generated document (research, resume, cover letter)"""
async def get_document(self, user_id: str, app_id: str, doc_type: str) -> Document:
"""Retrieve document for viewing/editing"""
async def update_document(self, user_id: str, app_id: str, doc_type: str, content: str) -> None:
"""Update document after user editing"""
async def get_all_documents(self, user_id: str, app_id: str) -> ApplicationDocuments:
"""Get all documents for an application"""
Document Models
class Document(BaseModel):
"""Base document model"""
id: str
application_id: str
document_type: str # research_report, optimized_resume, cover_letter
content: str
created_at: datetime
updated_at: datetime
class ApplicationDocuments(BaseModel):
"""All documents for an application"""
research_report: Optional[Document] = None
optimized_resume: Optional[Document] = None
cover_letter: Optional[Document] = None
Database Schema (Documents)
CREATE TABLE documents (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
application_id UUID REFERENCES applications(id) ON DELETE CASCADE,
document_type VARCHAR(50) NOT NULL,
content TEXT NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
ALTER TABLE documents ENABLE ROW LEVEL SECURITY;
CREATE POLICY user_documents_policy ON documents
FOR ALL TO application_user
USING (
application_id IN (
SELECT id FROM applications
WHERE user_id = current_setting('app.current_user_id')::UUID
)
);
🎨 Frontend Interface (Dash + Mantine)
Main Application Layout
class JobForgeApp:
"""Main Dash application layout"""
def create_layout(self):
return dmc.MantineProvider([
dmc.AppShell([
dmc.Navbar([
ApplicationSidebar()
], width={"base": 300}),
dmc.Main([
ApplicationTopBar(),
MainContent()
])
])
])
Application Sidebar
class ApplicationSidebar:
"""Sidebar with applications list and navigation"""
def render(self, user_id: str):
return dmc.Stack([
# New Application Button
dmc.Button(
"➕ New Application",
id="new-app-btn",
fullWidth=True,
variant="filled"
),
# Applications List
dmc.Title("Applications", order=4),
dmc.ScrollArea([
ApplicationCard(app) for app in self.get_user_applications(user_id)
]),
# Resume Library Section
dmc.Divider(),
dmc.Title("Resume Library", order=4),
ResumeLibrarySection()
])
class ApplicationCard:
"""Individual application card in sidebar"""
def render(self, application: Application):
return dmc.Card([
dmc.Group([
dmc.Text(application.company_name, weight=600),
StatusBadge(application.status)
]),
dmc.Text(application.role_title, size="sm", color="dimmed"),
dmc.Text(application.created_at.strftime("%Y-%m-%d"), size="xs")
], id=f"app-card-{application.id}")
Application Top Bar Navigation
class ApplicationTopBar:
"""Top navigation bar for application phases"""
def render(self, application: Application):
return dmc.Group([
# Phase Navigation Buttons
PhaseButton("Research", "research", application.research_completed),
PhaseButton("Resume", "resume", application.resume_optimized),
PhaseButton("Cover Letter", "cover_letter", application.cover_letter_generated),
# Application Actions
dmc.Spacer(),
dmc.ActionIcon(
DashIconify(icon="tabler:settings"),
id="app-settings-btn"
)
])
class PhaseButton:
"""Navigation button for each phase"""
def render(self, label: str, phase: str, completed: bool):
icon = "tabler:check" if completed else "tabler:clock"
color = "green" if completed else "gray"
return dmc.Button([
DashIconify(icon=icon),
dmc.Text(label, ml="xs")
],
variant="subtle" if not completed else "filled",
color=color,
id=f"phase-{phase}-btn"
)
Document Editor Interface
class DocumentEditor:
"""Markdown document editor with preview"""
def render(self, document: Document):
return dmc.Container([
dmc.Grid([
# Editor Column
dmc.Col([
dmc.Title(f"Edit {document.document_type.replace('_', ' ').title()}", order=3),
dmc.Textarea(
value=document.content,
placeholder="Document content...",
minRows=20,
autosize=True,
id=f"editor-{document.document_type}"
),
dmc.Group([
dmc.Button("Save Changes", id="save-btn"),
dmc.Button("Cancel", variant="outline", id="cancel-btn")
])
], span=6),
# Preview Column
dmc.Col([
dmc.Title("Preview", order=3),
dmc.Container([
dcc.Markdown(document.content, id="preview-content")
], style={"border": "1px solid #e0e0e0", "padding": "1rem", "minHeight": "500px"})
], span=6)
])
])
🗄️ MVP Database Schema
Complete Database Setup
-- Enable required extensions
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
CREATE EXTENSION IF NOT EXISTS vector;
-- Users table
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
full_name VARCHAR(255) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
-- Applications table
CREATE TABLE applications (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id) ON DELETE CASCADE,
name VARCHAR(255) NOT NULL,
company_name VARCHAR(255) NOT NULL,
role_title VARCHAR(255) NOT NULL,
job_url TEXT,
job_description TEXT NOT NULL,
location VARCHAR(255),
priority_level VARCHAR(20) DEFAULT 'medium',
status VARCHAR(50) DEFAULT 'draft',
research_completed BOOLEAN DEFAULT FALSE,
resume_optimized BOOLEAN DEFAULT FALSE,
cover_letter_generated BOOLEAN DEFAULT FALSE,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
-- Documents table
CREATE TABLE documents (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
application_id UUID REFERENCES applications(id) ON DELETE CASCADE,
document_type VARCHAR(50) NOT NULL,
content TEXT NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW(),
UNIQUE(application_id, document_type)
);
-- Resume library table
CREATE TABLE user_resumes (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id) ON DELETE CASCADE,
name VARCHAR(255) NOT NULL,
content TEXT NOT NULL,
focus_area VARCHAR(100),
is_primary BOOLEAN DEFAULT FALSE,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
-- Basic vector embeddings (for future enhancement)
CREATE TABLE document_embeddings (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
document_id UUID REFERENCES documents(id) ON DELETE CASCADE,
embedding vector(1536),
created_at TIMESTAMP DEFAULT NOW()
);
-- Row Level Security
ALTER TABLE users ENABLE ROW LEVEL SECURITY;
ALTER TABLE applications ENABLE ROW LEVEL SECURITY;
ALTER TABLE documents ENABLE ROW LEVEL SECURITY;
ALTER TABLE user_resumes ENABLE ROW LEVEL SECURITY;
-- Security policies
CREATE POLICY user_own_data ON applications FOR ALL USING (user_id = current_setting('app.current_user_id')::UUID);
CREATE POLICY user_own_documents ON documents FOR ALL USING (
application_id IN (SELECT id FROM applications WHERE user_id = current_setting('app.current_user_id')::UUID)
);
CREATE POLICY user_own_resumes ON user_resumes FOR ALL USING (user_id = current_setting('app.current_user_id')::UUID);
🚀 Web Application Development Plan
Development Phases
Phase 1: Infrastructure & Authentication (Weeks 1-2)
- Docker containerization for development and production
- PostgreSQL 16 with pgvector extension setup
- FastAPI backend with JWT authentication
- Row Level Security (RLS) implementation
- Basic CI/CD pipeline setup
Phase 2: Core Web Application (Weeks 3-4)
- Dash + Mantine responsive web interface
- Application CRUD operations with API endpoints
- User dashboard and application management
- Database integration with async operations
- Multi-tenant data isolation
Phase 3: AI Integration (Weeks 5-6)
- Claude API integration for document generation
- OpenAI API for embeddings and analysis
- Async AI service layer implementation
- Error handling and retry mechanisms
- AI service rate limiting and monitoring
Phase 4: Production Deployment (Weeks 7-8)
- Server deployment with Docker Compose
- Nginx reverse proxy and SSL configuration
- Database backup and monitoring setup
- Performance optimization and caching
- Security hardening and testing
Prototype Success Criteria
- ✅ Secure multi-user web application deployed to server
- ✅ JWT-based authentication with user registration/login
- ✅ Full CRUD operations for job applications
- ✅ AI-powered cover letter generation via web interface
- ✅ Responsive web UI with modern UX design
- ✅ Secure data storage with user isolation (RLS)
- ✅ Production-ready deployment with monitoring
- ✅ Scalable architecture for future enhancements
🐳 Docker Production Deployment
Production Environment
# docker-compose.yml
version: '3.8'
services:
# FastAPI + Dash Web Application
jobforge-app:
build:
context: .
dockerfile: Dockerfile
target: production
container_name: jobforge-app
environment:
- DATABASE_URL=postgresql://jobforge:${DB_PASSWORD}@postgres:5432/jobforge
- CLAUDE_API_KEY=${CLAUDE_API_KEY}
- OPENAI_API_KEY=${OPENAI_API_KEY}
- JWT_SECRET=${JWT_SECRET}
- DEBUG=false
- LOG_LEVEL=INFO
volumes:
- ./uploads:/app/uploads
- ./logs:/var/log/jobforge
depends_on:
postgres:
condition: service_healthy
networks:
- jobforge-network
restart: unless-stopped
# PostgreSQL with pgvector
postgres:
image: pgvector/pgvector:pg16
container_name: jobforge-postgres
environment:
- POSTGRES_DB=jobforge
- POSTGRES_USER=jobforge
- POSTGRES_PASSWORD=${DB_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data
- ./backups:/backups
networks:
- jobforge-network
restart: unless-stopped
healthcheck:
test: ["CMD-SHELL", "pg_isready -U jobforge -d jobforge"]
interval: 10s
timeout: 5s
retries: 5
# Nginx Reverse Proxy
nginx:
image: nginx:alpine
container_name: jobforge-nginx
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx/nginx.conf:/etc/nginx/nginx.conf:ro
- ./ssl:/etc/nginx/ssl:ro
depends_on:
- jobforge-app
networks:
- jobforge-network
restart: unless-stopped
networks:
jobforge-network:
driver: bridge
volumes:
postgres_data:
driver: local
📁 Web Application Project Structure
job-forge/
├── docker-compose.yml
├── Dockerfile
├── requirements.txt
├── requirements-dev.txt
├── .env.example
├── pytest.ini
├── alembic.ini
├── CLAUDE.md
├── README.md
├── app/
│ ├── main.py # FastAPI + Dash application entry
│ ├── core/
│ │ ├── config.py # Application configuration
│ │ ├── database.py # Database connection and session
│ │ ├── security.py # JWT authentication utilities
│ │ └── exceptions.py # Custom exception handlers
│ ├── api/
│ │ ├── v1/
│ │ │ ├── auth.py # Authentication endpoints
│ │ │ ├── applications.py # Application CRUD endpoints
│ │ │ └── documents.py # Document management endpoints
│ │ └── dependencies.py # FastAPI dependencies
│ ├── models/
│ │ ├── user.py # User SQLAlchemy model
│ │ ├── application.py # Application SQLAlchemy model
│ │ └── document.py # Document SQLAlchemy model
│ ├── schemas/
│ │ ├── user.py # User Pydantic schemas
│ │ ├── application.py # Application Pydantic schemas
│ │ └── auth.py # Authentication schemas
│ ├── crud/
│ │ ├── user.py # User database operations
│ │ ├── application.py # Application database operations
│ │ └── document.py # Document database operations
│ ├── services/
│ │ ├── auth.py # Authentication service
│ │ ├── application.py # Application business logic
│ │ └── ai/
│ │ ├── claude_service.py # Claude API integration
│ │ ├── openai_service.py # OpenAI API integration
│ │ └── document_generator.py # AI document generation
│ └── frontend/
│ ├── app.py # Dash application setup
│ ├── layouts/
│ │ ├── dashboard.py # Main dashboard layout
│ │ ├── auth.py # Login/register layouts
│ │ └── application.py # Application detail layout
│ ├── components/
│ │ ├── navigation.py # Navigation components
│ │ ├── forms.py # Form components
│ │ └── modals.py # Modal components
│ └── callbacks/
│ ├── auth.py # Authentication callbacks
│ ├── application.py # Application callbacks
│ └── navigation.py # Navigation callbacks
├── alembic/
│ ├── versions/ # Database migration files
│ └── env.py # Alembic configuration
├── tests/
│ ├── conftest.py # Pytest configuration and fixtures
│ ├── unit/ # Unit tests
│ ├── integration/ # Integration tests
│ └── e2e/ # End-to-end tests
├── docs/
│ ├── README.md # Main documentation hub
│ ├── development/ # Development documentation
│ ├── infrastructure/ # Deployment documentation
│ └── testing/ # Testing documentation
├── nginx/
│ └── nginx.conf # Nginx configuration
├── logs/ # Application logs
├── uploads/ # File uploads
└── backups/ # Database backups
This web application architecture provides a comprehensive, production-ready solution for AI-powered job application management. The FastAPI backend with Dash frontend delivers a modern web experience while maintaining scalability and security for prototype development and future enhancements.