feat(plugins): implement Sprint 4 commands (#241-#258)

Sprint 4 - Plugin Commands implementation adding 18 new user-facing
commands across 8 plugins as part of V5.2.0 Plugin Enhancements.

**projman:**
- #241: /sprint-diagram - Mermaid visualization of sprint issues

**pr-review:**
- #242: Confidence threshold config (PR_REVIEW_CONFIDENCE_THRESHOLD)
- #243: /pr-diff - Formatted diff with inline review comments

**data-platform:**
- #244: /data-quality - DataFrame quality checks (nulls, duplicates, outliers)
- #245: /lineage-viz - dbt lineage as Mermaid diagrams
- #246: /dbt-test - Formatted dbt test runner

**viz-platform:**
- #247: /chart-export - Export charts to PNG/SVG/PDF via kaleido
- #248: /accessibility-check - Color blind validation (WCAG contrast)
- #249: /breakpoints - Responsive layout configuration

**contract-validator:**
- #250: /dependency-graph - Plugin dependency visualization

**doc-guardian:**
- #251: /changelog-gen - Generate changelog from conventional commits
- #252: /doc-coverage - Documentation coverage metrics
- #253: /stale-docs - Flag outdated documentation

**claude-config-maintainer:**
- #254: /config-diff - Track CLAUDE.md changes over time
- #255: /config-lint - 31 lint rules for CLAUDE.md best practices

**cmdb-assistant:**
- #256: /cmdb-topology - Infrastructure topology diagrams
- #257: /change-audit - NetBox audit trail queries
- #258: /ip-conflicts - Detect IP conflicts and overlaps

Closes #241, #242, #243, #244, #245, #246, #247, #248, #249,
#250, #251, #252, #253, #254, #255, #256, #257, #258

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-28 12:02:26 -05:00
parent 8a957b1b69
commit 9698e8724d
36 changed files with 4295 additions and 22 deletions

View File

@@ -0,0 +1,103 @@
# /data-quality - Data Quality Assessment
Comprehensive data quality check for DataFrames with pass/warn/fail scoring.
## Usage
```
/data-quality <data_ref> [--strict]
```
## Workflow
1. **Get data reference**:
- If no data_ref provided, use `list_data` to show available options
- Validate the data_ref exists
2. **Null analysis**:
- Calculate null percentage per column
- **PASS**: < 5% nulls
- **WARN**: 5-20% nulls
- **FAIL**: > 20% nulls
3. **Duplicate detection**:
- Check for fully duplicated rows
- **PASS**: 0% duplicates
- **WARN**: < 1% duplicates
- **FAIL**: >= 1% duplicates
4. **Type consistency**:
- Identify mixed-type columns (object columns with mixed content)
- Flag columns that could be numeric but contain strings
- **PASS**: All columns have consistent types
- **FAIL**: Mixed types detected
5. **Outlier detection** (numeric columns):
- Use IQR method (values beyond 1.5 * IQR)
- Report percentage of outliers per column
- **PASS**: < 1% outliers
- **WARN**: 1-5% outliers
- **FAIL**: > 5% outliers
6. **Generate quality report**:
- Overall quality score (0-100)
- Per-column breakdown
- Recommendations for remediation
## Report Format
```
=== Data Quality Report ===
Dataset: sales_data
Rows: 10,000 | Columns: 15
Overall Score: 82/100 [PASS]
--- Column Analysis ---
| Column | Nulls | Dups | Type | Outliers | Status |
|--------------|-------|------|----------|----------|--------|
| customer_id | 0.0% | - | int64 | 0.2% | PASS |
| email | 2.3% | - | object | - | PASS |
| amount | 15.2% | - | float64 | 3.1% | WARN |
| created_at | 0.0% | - | datetime | - | PASS |
--- Issues Found ---
[WARN] Column 'amount': 15.2% null values (threshold: 5%)
[WARN] Column 'amount': 3.1% outliers detected
[FAIL] 1.2% duplicate rows detected (12 rows)
--- Recommendations ---
1. Investigate null values in 'amount' column
2. Review outliers in 'amount' - may be data entry errors
3. Remove or deduplicate 12 duplicate rows
```
## Options
| Flag | Description |
|------|-------------|
| `--strict` | Use stricter thresholds (WARN at 1% nulls, FAIL at 5%) |
## Examples
```
/data-quality sales_data
/data-quality df_customers --strict
```
## Scoring
| Component | Weight | Scoring |
|-----------|--------|---------|
| Nulls | 30% | 100 - (avg_null_pct * 2) |
| Duplicates | 20% | 100 - (dup_pct * 50) |
| Type consistency | 25% | 100 if clean, 0 if mixed |
| Outliers | 25% | 100 - (avg_outlier_pct * 10) |
Final score: Weighted average, capped at 0-100
## Available Tools
Use these MCP tools:
- `describe` - Get statistical summary (for outlier detection)
- `head` - Preview data
- `list_data` - List available DataFrames