Files
leo-claude-mktplace/plugins/data-platform
lmiranda c8b91f6a87 fix(plugins): remove broken mcpServers references that broke plugin loading
The MCP consolidation commit (afd4c44) deleted plugin-level .mcp.json files
but left references to them in plugin.json and marketplace.json. This caused
7 plugins to fail loading (projman, pr-review, cmdb-assistant, data-platform,
viz-platform, contract-validator, and indirectly git-flow/clarity-assist).

Changes:
- Remove mcpServers field from 6 plugin.json files (file no longer exists)
- Remove mcpServers field from 6 marketplace.json entries
- Add file reference validation to validate-marketplace.sh:
  - Validates mcpServers references point to existing files
  - Validates hooks references point to existing files
  - Validates commands references point to existing paths
- Add pre-commit hook (.git/hooks/pre-commit) to enforce validation

The validation script will now FAIL if any config file references a
non-existent file, preventing this class of bug from happening again.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 18:09:08 -05:00
..

data-platform Plugin

Data engineering tools with pandas, PostgreSQL/PostGIS, and dbt integration for Claude Code.

Features

  • pandas Operations: Load, transform, and export DataFrames with persistent data_ref system
  • PostgreSQL/PostGIS: Database queries with connection pooling and spatial data support
  • dbt Integration: Build tool wrapper with pre-execution validation

Installation

This plugin is part of the leo-claude-mktplace. Install via:

# From marketplace
claude plugins install leo-claude-mktplace/data-platform

# Setup MCP server venv
cd ~/.claude/plugins/marketplaces/leo-claude-mktplace/mcp-servers/data-platform
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Configuration

PostgreSQL (Optional)

Create ~/.config/claude/postgres.env:

POSTGRES_URL=postgresql://user:password@host:5432/database

dbt (Optional)

Add to project .env:

DBT_PROJECT_DIR=/path/to/dbt/project
DBT_PROFILES_DIR=~/.dbt

Commands

Command Description
/initial-setup Interactive setup wizard for PostgreSQL and dbt configuration
/ingest Load data from files or database
/profile Generate data profile and statistics
/data-quality Data quality assessment with pass/warn/fail scoring
/schema Show database/DataFrame schema
/explain Explain dbt model lineage
/lineage Visualize data dependencies (ASCII)
/lineage-viz Generate Mermaid flowchart for dbt lineage
/run Execute dbt models
/dbt-test Run dbt tests with formatted results

Agents

Agent Description
data-ingestion Data loading and transformation specialist
data-analysis Exploration and profiling specialist

data_ref System

All DataFrame operations use a data_ref system for persistence:

# Load returns a reference
read_csv("data.csv") → {"data_ref": "sales_data"}

# Use reference in subsequent operations
filter("sales_data", "amount > 100") → {"data_ref": "sales_data_filtered"}
describe("sales_data_filtered") → {statistics}

Example Workflow

/ingest data/sales.csv
# → Loaded 50,000 rows as "sales_data"

/profile sales_data
# → Statistical summary, null counts, quality assessment

/schema orders
# → Column names, types, constraints

/lineage fct_orders
# → Dependency graph showing upstream/downstream models

/run dim_customers
# → Pre-validates then executes dbt model

Tools Summary

pandas (14 tools)

read_csv, read_parquet, read_json, to_csv, to_parquet, describe, head, tail, filter, select, groupby, join, list_data, drop_data

PostgreSQL (6 tools)

pg_connect, pg_query, pg_execute, pg_tables, pg_columns, pg_schemas

PostGIS (4 tools)

st_tables, st_geometry_type, st_srid, st_extent

dbt (8 tools)

dbt_parse, dbt_run, dbt_test, dbt_build, dbt_compile, dbt_ls, dbt_docs_generate, dbt_lineage

Memory Management

  • Default limit: 100,000 rows per DataFrame
  • Configure via DATA_PLATFORM_MAX_ROWS environment variable
  • Use chunk_size parameter for large files
  • Monitor with list_data tool

SessionStart Hook

On session start, the plugin checks PostgreSQL connectivity and displays a warning if unavailable. This is non-blocking - pandas and dbt tools remain available.