Files
leo-claude-mktplace/plugins/data-platform/commands/data-quality.md
lmiranda b5d36865ee feat(plugins): add Visual Output headers to all other plugin commands
Add single-line visual headers to 66 command files across 10 plugins:
- clarity-assist (2 commands): 💬
- claude-config-maintainer (5 commands): ⚙️
- cmdb-assistant (11 commands): 🖥️
- code-sentinel (3 commands): 🔒
- contract-validator (5 commands): 
- data-platform (10 commands): 📊
- doc-guardian (5 commands): 📝
- git-flow (8 commands): 🔀
- pr-review (7 commands): 🔍
- viz-platform (10 commands): 🎨

Each command now displays a consistent header at execution start:
┌────────────────────────────────────────────────────────────────┐
│  [icon] PLUGIN-NAME · Command Description                       │
└────────────────────────────────────────────────────────────────┘

Addresses #275 (other plugin commands visual output)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-28 17:24:49 -05:00

116 lines
3.3 KiB
Markdown

# /data-quality - Data Quality Assessment
## Visual Output
When executing this command, display the plugin header:
```
┌──────────────────────────────────────────────────────────────────┐
│ 📊 DATA-PLATFORM · Data Quality │
└──────────────────────────────────────────────────────────────────┘
```
Then proceed with the assessment.
Comprehensive data quality check for DataFrames with pass/warn/fail scoring.
## Usage
```
/data-quality <data_ref> [--strict]
```
## Workflow
1. **Get data reference**:
- If no data_ref provided, use `list_data` to show available options
- Validate the data_ref exists
2. **Null analysis**:
- Calculate null percentage per column
- **PASS**: < 5% nulls
- **WARN**: 5-20% nulls
- **FAIL**: > 20% nulls
3. **Duplicate detection**:
- Check for fully duplicated rows
- **PASS**: 0% duplicates
- **WARN**: < 1% duplicates
- **FAIL**: >= 1% duplicates
4. **Type consistency**:
- Identify mixed-type columns (object columns with mixed content)
- Flag columns that could be numeric but contain strings
- **PASS**: All columns have consistent types
- **FAIL**: Mixed types detected
5. **Outlier detection** (numeric columns):
- Use IQR method (values beyond 1.5 * IQR)
- Report percentage of outliers per column
- **PASS**: < 1% outliers
- **WARN**: 1-5% outliers
- **FAIL**: > 5% outliers
6. **Generate quality report**:
- Overall quality score (0-100)
- Per-column breakdown
- Recommendations for remediation
## Report Format
```
=== Data Quality Report ===
Dataset: sales_data
Rows: 10,000 | Columns: 15
Overall Score: 82/100 [PASS]
--- Column Analysis ---
| Column | Nulls | Dups | Type | Outliers | Status |
|--------------|-------|------|----------|----------|--------|
| customer_id | 0.0% | - | int64 | 0.2% | PASS |
| email | 2.3% | - | object | - | PASS |
| amount | 15.2% | - | float64 | 3.1% | WARN |
| created_at | 0.0% | - | datetime | - | PASS |
--- Issues Found ---
[WARN] Column 'amount': 15.2% null values (threshold: 5%)
[WARN] Column 'amount': 3.1% outliers detected
[FAIL] 1.2% duplicate rows detected (12 rows)
--- Recommendations ---
1. Investigate null values in 'amount' column
2. Review outliers in 'amount' - may be data entry errors
3. Remove or deduplicate 12 duplicate rows
```
## Options
| Flag | Description |
|------|-------------|
| `--strict` | Use stricter thresholds (WARN at 1% nulls, FAIL at 5%) |
## Examples
```
/data-quality sales_data
/data-quality df_customers --strict
```
## Scoring
| Component | Weight | Scoring |
|-----------|--------|---------|
| Nulls | 30% | 100 - (avg_null_pct * 2) |
| Duplicates | 20% | 100 - (dup_pct * 50) |
| Type consistency | 25% | 100 if clean, 0 if mixed |
| Outliers | 25% | 100 - (avg_outlier_pct * 10) |
Final score: Weighted average, capped at 0-100
## Available Tools
Use these MCP tools:
- `describe` - Get statistical summary (for outlier detection)
- `head` - Preview data
- `list_data` - List available DataFrames