Add single-line visual headers to 66 command files across 10 plugins: - clarity-assist (2 commands): 💬 - claude-config-maintainer (5 commands): ⚙️ - cmdb-assistant (11 commands): 🖥️ - code-sentinel (3 commands): 🔒 - contract-validator (5 commands): ✅ - data-platform (10 commands): 📊 - doc-guardian (5 commands): 📝 - git-flow (8 commands): 🔀 - pr-review (7 commands): 🔍 - viz-platform (10 commands): 🎨 Each command now displays a consistent header at execution start: ┌────────────────────────────────────────────────────────────────┐ │ [icon] PLUGIN-NAME · Command Description │ └────────────────────────────────────────────────────────────────┘ Addresses #275 (other plugin commands visual output) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
1.5 KiB
1.5 KiB
/profile - Data Profiling
Visual Output
When executing this command, display the plugin header:
┌──────────────────────────────────────────────────────────────────┐
│ 📊 DATA-PLATFORM · Data Profile │
└──────────────────────────────────────────────────────────────────┘
Then proceed with the profiling.
Generate statistical profile and quality report for a DataFrame.
Usage
/profile <data_ref>
Workflow
-
Get data reference:
- If no data_ref provided, use
list_datato show available options - Validate the data_ref exists
- If no data_ref provided, use
-
Generate profile:
- Use
describefor statistical summary - Analyze null counts, unique values, data types
- Use
-
Quality assessment:
- Identify columns with high null percentage
- Flag potential data quality issues
- Suggest cleaning operations if needed
-
Report:
- Summary statistics per column
- Data type distribution
- Memory usage
- Quality score
Examples
/profile sales_data
/profile df_a1b2c3d4
Available Tools
Use these MCP tools:
describe- Get statistical summaryhead- Preview first rowslist_data- List available DataFrames