Files
leo-claude-mktplace/mcp-servers/viz-platform/mcp_server/accessibility_tools.py
lmiranda 9698e8724d feat(plugins): implement Sprint 4 commands (#241-#258)
Sprint 4 - Plugin Commands implementation adding 18 new user-facing
commands across 8 plugins as part of V5.2.0 Plugin Enhancements.

**projman:**
- #241: /sprint-diagram - Mermaid visualization of sprint issues

**pr-review:**
- #242: Confidence threshold config (PR_REVIEW_CONFIDENCE_THRESHOLD)
- #243: /pr-diff - Formatted diff with inline review comments

**data-platform:**
- #244: /data-quality - DataFrame quality checks (nulls, duplicates, outliers)
- #245: /lineage-viz - dbt lineage as Mermaid diagrams
- #246: /dbt-test - Formatted dbt test runner

**viz-platform:**
- #247: /chart-export - Export charts to PNG/SVG/PDF via kaleido
- #248: /accessibility-check - Color blind validation (WCAG contrast)
- #249: /breakpoints - Responsive layout configuration

**contract-validator:**
- #250: /dependency-graph - Plugin dependency visualization

**doc-guardian:**
- #251: /changelog-gen - Generate changelog from conventional commits
- #252: /doc-coverage - Documentation coverage metrics
- #253: /stale-docs - Flag outdated documentation

**claude-config-maintainer:**
- #254: /config-diff - Track CLAUDE.md changes over time
- #255: /config-lint - 31 lint rules for CLAUDE.md best practices

**cmdb-assistant:**
- #256: /cmdb-topology - Infrastructure topology diagrams
- #257: /change-audit - NetBox audit trail queries
- #258: /ip-conflicts - Detect IP conflicts and overlaps

Closes #241, #242, #243, #244, #245, #246, #247, #248, #249,
#250, #251, #252, #253, #254, #255, #256, #257, #258

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-28 12:02:26 -05:00

480 lines
17 KiB
Python

"""
Accessibility validation tools for color blindness and WCAG compliance.
Provides tools for validating color palettes against color blindness
simulations and WCAG contrast requirements.
"""
import logging
import math
from typing import Dict, List, Optional, Any, Tuple
logger = logging.getLogger(__name__)
# Color-blind safe palettes
SAFE_PALETTES = {
"categorical": {
"name": "Paul Tol's Qualitative",
"colors": ["#4477AA", "#EE6677", "#228833", "#CCBB44", "#66CCEE", "#AA3377", "#BBBBBB"],
"description": "Distinguishable for all types of color blindness"
},
"ibm": {
"name": "IBM Design",
"colors": ["#648FFF", "#785EF0", "#DC267F", "#FE6100", "#FFB000"],
"description": "IBM's accessible color palette"
},
"okabe_ito": {
"name": "Okabe-Ito",
"colors": ["#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#000000"],
"description": "Optimized for all color vision deficiencies"
},
"tableau_colorblind": {
"name": "Tableau Colorblind 10",
"colors": ["#006BA4", "#FF800E", "#ABABAB", "#595959", "#5F9ED1",
"#C85200", "#898989", "#A2C8EC", "#FFBC79", "#CFCFCF"],
"description": "Industry-standard accessible palette"
}
}
# Simulation matrices for color blindness (LMS color space transformation)
# These approximate how colors appear to people with different types of color blindness
SIMULATION_MATRICES = {
"deuteranopia": {
# Green-blind (most common)
"severity": "common",
"population": "6% males, 0.4% females",
"description": "Difficulty distinguishing red from green (green-blind)",
"matrix": [
[0.625, 0.375, 0.0],
[0.700, 0.300, 0.0],
[0.0, 0.300, 0.700]
]
},
"protanopia": {
# Red-blind
"severity": "common",
"population": "2.5% males, 0.05% females",
"description": "Difficulty distinguishing red from green (red-blind)",
"matrix": [
[0.567, 0.433, 0.0],
[0.558, 0.442, 0.0],
[0.0, 0.242, 0.758]
]
},
"tritanopia": {
# Blue-blind (rare)
"severity": "rare",
"population": "0.01% total",
"description": "Difficulty distinguishing blue from yellow",
"matrix": [
[0.950, 0.050, 0.0],
[0.0, 0.433, 0.567],
[0.0, 0.475, 0.525]
]
}
}
class AccessibilityTools:
"""
Color accessibility validation tools.
Validates colors for WCAG compliance and color blindness accessibility.
"""
def __init__(self, theme_store=None):
"""
Initialize accessibility tools.
Args:
theme_store: Optional ThemeStore for theme color extraction
"""
self.theme_store = theme_store
def _hex_to_rgb(self, hex_color: str) -> Tuple[int, int, int]:
"""Convert hex color to RGB tuple."""
hex_color = hex_color.lstrip('#')
if len(hex_color) == 3:
hex_color = ''.join([c * 2 for c in hex_color])
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
def _rgb_to_hex(self, rgb: Tuple[int, int, int]) -> str:
"""Convert RGB tuple to hex color."""
return '#{:02x}{:02x}{:02x}'.format(
max(0, min(255, int(rgb[0]))),
max(0, min(255, int(rgb[1]))),
max(0, min(255, int(rgb[2])))
)
def _get_relative_luminance(self, rgb: Tuple[int, int, int]) -> float:
"""
Calculate relative luminance per WCAG 2.1.
https://www.w3.org/WAI/GL/wiki/Relative_luminance
"""
def channel_luminance(value: int) -> float:
v = value / 255
return v / 12.92 if v <= 0.03928 else ((v + 0.055) / 1.055) ** 2.4
r, g, b = rgb
return (
0.2126 * channel_luminance(r) +
0.7152 * channel_luminance(g) +
0.0722 * channel_luminance(b)
)
def _get_contrast_ratio(self, color1: str, color2: str) -> float:
"""
Calculate contrast ratio between two colors per WCAG 2.1.
Returns ratio between 1:1 and 21:1.
"""
rgb1 = self._hex_to_rgb(color1)
rgb2 = self._hex_to_rgb(color2)
l1 = self._get_relative_luminance(rgb1)
l2 = self._get_relative_luminance(rgb2)
lighter = max(l1, l2)
darker = min(l1, l2)
return (lighter + 0.05) / (darker + 0.05)
def _simulate_color_blindness(
self,
hex_color: str,
deficiency_type: str
) -> str:
"""
Simulate how a color appears with a specific color blindness type.
Uses linear RGB transformation approximation.
"""
if deficiency_type not in SIMULATION_MATRICES:
return hex_color
rgb = self._hex_to_rgb(hex_color)
matrix = SIMULATION_MATRICES[deficiency_type]["matrix"]
# Apply transformation matrix
r = rgb[0] * matrix[0][0] + rgb[1] * matrix[0][1] + rgb[2] * matrix[0][2]
g = rgb[0] * matrix[1][0] + rgb[1] * matrix[1][1] + rgb[2] * matrix[1][2]
b = rgb[0] * matrix[2][0] + rgb[1] * matrix[2][1] + rgb[2] * matrix[2][2]
return self._rgb_to_hex((r, g, b))
def _get_color_distance(self, color1: str, color2: str) -> float:
"""
Calculate perceptual color distance (CIE76 approximation).
Returns a value where < 20 means colors may be hard to distinguish.
"""
rgb1 = self._hex_to_rgb(color1)
rgb2 = self._hex_to_rgb(color2)
# Simple Euclidean distance in RGB space (approximation)
# For production, should use CIEDE2000
return math.sqrt(
(rgb1[0] - rgb2[0]) ** 2 +
(rgb1[1] - rgb2[1]) ** 2 +
(rgb1[2] - rgb2[2]) ** 2
)
async def accessibility_validate_colors(
self,
colors: List[str],
check_types: Optional[List[str]] = None,
min_contrast_ratio: float = 4.5
) -> Dict[str, Any]:
"""
Validate a list of colors for accessibility.
Args:
colors: List of hex colors to validate
check_types: Color blindness types to check (default: all)
min_contrast_ratio: Minimum WCAG contrast ratio (default: 4.5 for AA)
Returns:
Dict with:
- issues: List of accessibility issues found
- simulations: How colors appear under each deficiency
- recommendations: Suggestions for improvement
- safe_palettes: Color-blind safe palette suggestions
"""
check_types = check_types or list(SIMULATION_MATRICES.keys())
issues = []
simulations = {}
# Normalize colors
normalized_colors = [c.upper() if c.startswith('#') else f'#{c.upper()}' for c in colors]
# Simulate each color blindness type
for deficiency in check_types:
if deficiency not in SIMULATION_MATRICES:
continue
simulated = [self._simulate_color_blindness(c, deficiency) for c in normalized_colors]
simulations[deficiency] = {
"original": normalized_colors,
"simulated": simulated,
"info": SIMULATION_MATRICES[deficiency]
}
# Check if any color pairs become indistinguishable
for i in range(len(normalized_colors)):
for j in range(i + 1, len(normalized_colors)):
distance = self._get_color_distance(simulated[i], simulated[j])
if distance < 30: # Threshold for distinguishability
issues.append({
"type": "distinguishability",
"severity": "warning" if distance > 15 else "error",
"colors": [normalized_colors[i], normalized_colors[j]],
"affected_by": [deficiency],
"simulated_colors": [simulated[i], simulated[j]],
"distance": round(distance, 1),
"message": f"Colors may be hard to distinguish for {deficiency} ({SIMULATION_MATRICES[deficiency]['description']})"
})
# Check contrast ratios against white and black backgrounds
for color in normalized_colors:
white_contrast = self._get_contrast_ratio(color, "#FFFFFF")
black_contrast = self._get_contrast_ratio(color, "#000000")
if white_contrast < min_contrast_ratio and black_contrast < min_contrast_ratio:
issues.append({
"type": "contrast_ratio",
"severity": "error",
"colors": [color],
"white_contrast": round(white_contrast, 2),
"black_contrast": round(black_contrast, 2),
"required": min_contrast_ratio,
"message": f"Insufficient contrast against both white ({white_contrast:.1f}:1) and black ({black_contrast:.1f}:1) backgrounds"
})
# Generate recommendations
recommendations = self._generate_recommendations(issues)
# Calculate overall score
error_count = sum(1 for i in issues if i["severity"] == "error")
warning_count = sum(1 for i in issues if i["severity"] == "warning")
if error_count == 0 and warning_count == 0:
score = "A"
elif error_count == 0 and warning_count <= 2:
score = "B"
elif error_count <= 2:
score = "C"
else:
score = "D"
return {
"colors_checked": normalized_colors,
"overall_score": score,
"issue_count": len(issues),
"issues": issues,
"simulations": simulations,
"recommendations": recommendations,
"safe_palettes": SAFE_PALETTES
}
async def accessibility_validate_theme(
self,
theme_name: str
) -> Dict[str, Any]:
"""
Validate a theme's colors for accessibility.
Args:
theme_name: Theme name to validate
Returns:
Dict with accessibility validation results
"""
if not self.theme_store:
return {
"error": "Theme store not configured",
"theme_name": theme_name
}
theme = self.theme_store.get_theme(theme_name)
if not theme:
available = self.theme_store.list_themes()
return {
"error": f"Theme '{theme_name}' not found. Available: {available}",
"theme_name": theme_name
}
# Extract colors from theme
colors = []
tokens = theme.get("tokens", {})
color_tokens = tokens.get("colors", {})
def extract_colors(obj, prefix=""):
"""Recursively extract color values."""
if isinstance(obj, str) and (obj.startswith('#') or len(obj) == 6):
colors.append(obj if obj.startswith('#') else f'#{obj}')
elif isinstance(obj, dict):
for key, value in obj.items():
extract_colors(value, f"{prefix}.{key}")
elif isinstance(obj, list):
for item in obj:
extract_colors(item, prefix)
extract_colors(color_tokens)
# Validate extracted colors
result = await self.accessibility_validate_colors(colors)
result["theme_name"] = theme_name
# Add theme-specific checks
primary = color_tokens.get("primary")
background = color_tokens.get("background", {})
text = color_tokens.get("text", {})
if primary and background:
bg_color = background.get("base") if isinstance(background, dict) else background
if bg_color:
contrast = self._get_contrast_ratio(primary, bg_color)
if contrast < 4.5:
result["issues"].append({
"type": "primary_contrast",
"severity": "error",
"colors": [primary, bg_color],
"ratio": round(contrast, 2),
"required": 4.5,
"message": f"Primary color has insufficient contrast ({contrast:.1f}:1) against background"
})
return result
async def accessibility_suggest_alternative(
self,
color: str,
deficiency_type: str
) -> Dict[str, Any]:
"""
Suggest accessible alternative colors.
Args:
color: Original hex color
deficiency_type: Type of color blindness to optimize for
Returns:
Dict with alternative color suggestions
"""
rgb = self._hex_to_rgb(color)
suggestions = []
# Suggest shifting hue while maintaining saturation and brightness
# For red-green deficiency, shift toward blue or yellow
if deficiency_type in ["deuteranopia", "protanopia"]:
# Shift toward blue
blue_shift = self._rgb_to_hex((
max(0, rgb[0] - 50),
max(0, rgb[1] - 30),
min(255, rgb[2] + 80)
))
suggestions.append({
"color": blue_shift,
"description": "Blue-shifted alternative",
"preserves": "approximate brightness"
})
# Shift toward yellow/orange
yellow_shift = self._rgb_to_hex((
min(255, rgb[0] + 50),
min(255, rgb[1] + 30),
max(0, rgb[2] - 80)
))
suggestions.append({
"color": yellow_shift,
"description": "Yellow-shifted alternative",
"preserves": "approximate brightness"
})
elif deficiency_type == "tritanopia":
# For blue-yellow deficiency, shift toward red or green
red_shift = self._rgb_to_hex((
min(255, rgb[0] + 60),
max(0, rgb[1] - 20),
max(0, rgb[2] - 40)
))
suggestions.append({
"color": red_shift,
"description": "Red-shifted alternative",
"preserves": "approximate brightness"
})
# Add safe palette suggestions
for palette_name, palette in SAFE_PALETTES.items():
# Find closest color in safe palette
min_distance = float('inf')
closest = None
for safe_color in palette["colors"]:
distance = self._get_color_distance(color, safe_color)
if distance < min_distance:
min_distance = distance
closest = safe_color
if closest:
suggestions.append({
"color": closest,
"description": f"From {palette['name']} palette",
"palette": palette_name
})
return {
"original_color": color,
"deficiency_type": deficiency_type,
"suggestions": suggestions[:5] # Limit to 5 suggestions
}
def _generate_recommendations(self, issues: List[Dict[str, Any]]) -> List[str]:
"""Generate actionable recommendations based on issues."""
recommendations = []
# Check for distinguishability issues
distinguishability_issues = [i for i in issues if i["type"] == "distinguishability"]
if distinguishability_issues:
affected_types = set()
for issue in distinguishability_issues:
affected_types.update(issue.get("affected_by", []))
if "deuteranopia" in affected_types or "protanopia" in affected_types:
recommendations.append(
"Avoid using red and green as the only differentiators - "
"add patterns, shapes, or labels"
)
recommendations.append(
"Consider using a color-blind safe palette like Okabe-Ito or IBM Design"
)
# Check for contrast issues
contrast_issues = [i for i in issues if i["type"] in ["contrast_ratio", "primary_contrast"]]
if contrast_issues:
recommendations.append(
"Increase contrast by darkening colors for light backgrounds "
"or lightening for dark backgrounds"
)
recommendations.append(
"Use WCAG contrast checker tools to verify text readability"
)
# General recommendations
if len(issues) > 0:
recommendations.append(
"Add secondary visual cues (icons, patterns, labels) "
"to not rely solely on color"
)
if not recommendations:
recommendations.append(
"Color palette appears accessible! Consider adding patterns "
"for additional distinguishability"
)
return recommendations