docs: Complete Phase 6 notebooks and Phase 7 documentation review

Phase 6 - Jupyter Notebooks (15 total):
- Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter
- Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar
- Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line
- Demographics tab: income_choropleth, age_distribution, population_density_bar
- Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar

Phase 7 - Documentation:
- Updated CLAUDE.md with Sprint 9 completion status
- Added notebooks directory to application structure
- Expanded figures directory listing

Closes #71, #72, #73, #74, #75, #76, #77

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-17 12:10:46 -05:00
parent c9cf744d84
commit 1eba95d4d1
20 changed files with 2711 additions and 4 deletions

View File

@@ -0,0 +1,183 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Income vs Safety Scatter Plot\n",
"\n",
"Explores the correlation between median household income and safety score across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" median_household_income,\n",
" safety_score,\n",
" population,\n",
" livability_score,\n",
" crime_rate_per_100k\n",
"FROM mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_overview)\n",
" AND median_household_income IS NOT NULL\n",
" AND safety_score IS NOT NULL\n",
"ORDER BY median_household_income DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with income and safety data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter out null values for income and safety\n",
"2. Optionally scale income to thousands for readability\n",
"3. Pass to scatter figure factory with optional trendline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scale income to thousands for better axis readability\n",
"df['income_thousands'] = df['median_household_income'] / 1000\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'median_household_income', 'safety_score', 'crime_rate_per_100k']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_scatter_figure` from `portfolio_app.figures.scatter`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'income_thousands' (median household income in $K)\n",
"- `y_column`: 'safety_score' (0-100 percentile rank)\n",
"- `name_column`: 'neighbourhood_name' (hover label)\n",
"- `size_column`: 'population' (optional, bubble size)\n",
"- `trendline`: True (adds OLS regression line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.scatter import create_scatter_figure\n",
"\n",
"fig = create_scatter_figure(\n",
" data=data,\n",
" x_column='income_thousands',\n",
" y_column='safety_score',\n",
" name_column='neighbourhood_name',\n",
" size_column='population',\n",
" title='Income vs Safety by Neighbourhood',\n",
" x_title='Median Household Income ($K)',\n",
" y_title='Safety Score (0-100)',\n",
" trendline=True,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpretation\n",
"\n",
"This scatter plot reveals the relationship between income and safety:\n",
"\n",
"- **Positive correlation**: Higher income neighbourhoods tend to have higher safety scores\n",
"- **Bubble size**: Represents population (larger = more people)\n",
"- **Trendline**: Orange dashed line shows the overall trend\n",
"- **Outliers**: Neighbourhoods far from the trendline are interesting cases\n",
" - Above line: Safer than income would predict\n",
" - Below line: Less safe than income would predict"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate correlation coefficient\n",
"correlation = df['median_household_income'].corr(df['safety_score'])\n",
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}