docs: Complete Phase 6 notebooks and Phase 7 documentation review

Phase 6 - Jupyter Notebooks (15 total):
- Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter
- Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar
- Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line
- Demographics tab: income_choropleth, age_distribution, population_density_bar
- Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar

Phase 7 - Documentation:
- Updated CLAUDE.md with Sprint 9 completion status
- Added notebooks directory to application structure
- Expanded figures directory listing

Closes #71, #72, #73, #74, #75, #76, #77

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-17 12:10:46 -05:00
parent c9cf744d84
commit 1eba95d4d1
20 changed files with 2711 additions and 4 deletions

View File

@@ -0,0 +1,167 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Top & Bottom 10 Neighbourhoods Bar Chart\n",
"\n",
"Horizontal bar chart showing the highest and lowest scoring neighbourhoods by livability."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" livability_score,\n",
" safety_score,\n",
" affordability_score,\n",
" amenity_score\n",
"FROM mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_overview)\n",
" AND livability_score IS NOT NULL\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with scores\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Sort by livability_score descending\n",
"2. Take top 10 and bottom 10\n",
"3. Pass to ranking bar figure factory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The figure factory handles top/bottom selection internally\n",
"# Just prepare as list of dicts\n",
"data = df.to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Top 5:\")\n",
"display(df.head(5))\n",
"print(\"\\nBottom 5:\")\n",
"display(df.tail(5))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `data`: List of dicts with all neighbourhoods\n",
"- `name_column`: 'neighbourhood_name'\n",
"- `value_column`: 'livability_score'\n",
"- `top_n`: 10 (green bars)\n",
"- `bottom_n`: 10 (red bars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column='neighbourhood_name',\n",
" value_column='livability_score',\n",
" title='Top & Bottom 10 Neighbourhoods by Livability',\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top='#4CAF50', # Green for top performers\n",
" color_bottom='#F44336', # Red for bottom performers\n",
" value_format='.1f',\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpretation\n",
"\n",
"- **Green bars**: Highest livability scores (best combination of safety, affordability, and amenities)\n",
"- **Red bars**: Lowest livability scores (areas that may need targeted investment)\n",
"\n",
"The ranking bar chart provides quick context for which neighbourhoods stand out at either extreme."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}