docs: Complete Phase 6 notebooks and Phase 7 documentation review

Phase 6 - Jupyter Notebooks (15 total):
- Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter
- Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar
- Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line
- Demographics tab: income_choropleth, age_distribution, population_density_bar
- Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar

Phase 7 - Documentation:
- Updated CLAUDE.md with Sprint 9 completion status
- Added notebooks directory to application structure
- Expanded figures directory listing

Closes #71, #72, #73, #74, #75, #76, #77

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-17 12:10:46 -05:00
parent c9cf744d84
commit 1eba95d4d1
20 changed files with 2711 additions and 4 deletions

View File

@@ -0,0 +1,172 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Crime Rate Choropleth Map\n",
"\n",
"Displays crime rates per 100,000 population across Toronto's 158 neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_safety` | neighbourhood × year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_id,\n",
" neighbourhood_name,\n",
" geometry,\n",
" year,\n",
" crime_rate_per_100k,\n",
" crime_index,\n",
" safety_tier,\n",
" total_incidents,\n",
" population\n",
"FROM mart_neighbourhood_safety\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_safety)\n",
"ORDER BY crime_rate_per_100k DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year\n",
"2. Convert geometry to GeoJSON\n",
"3. Use reversed color scale (green=low crime, red=high crime)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'crime_rate_per_100k', 'crime_index', 'safety_tier', 'total_incidents']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `color_column`: 'crime_rate_per_100k'\n",
"- `color_scale`: 'RdYlGn_r' (red=high crime, green=low crime)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='crime_rate_per_100k',\n",
" hover_data=['neighbourhood_name', 'crime_index', 'total_incidents'],\n",
" color_scale='RdYlGn_r',\n",
" title='Toronto Crime Rate per 100,000 Population',\n",
" zoom=10,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Safety Tier Interpretation\n",
"\n",
"| Tier | Meaning |\n",
"|------|--------|\n",
"| 1 | Highest crime (top 20%) |\n",
"| 2-4 | Middle tiers |\n",
"| 5 | Lowest crime (bottom 20%) |"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}