Compare commits
2 Commits
4818c53fd2
...
bf6e392002
| Author | SHA1 | Date | |
|---|---|---|---|
| bf6e392002 | |||
| d0f32edba7 |
35
.gitea/workflows/ci.yml
Normal file
35
.gitea/workflows/ci.yml
Normal file
@@ -0,0 +1,35 @@
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- development
|
||||
- staging
|
||||
- main
|
||||
pull_request:
|
||||
branches:
|
||||
- development
|
||||
|
||||
jobs:
|
||||
lint-and-test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
pip install ruff pytest
|
||||
|
||||
- name: Run linter
|
||||
run: ruff check .
|
||||
|
||||
- name: Run tests
|
||||
run: pytest tests/ -v --tb=short
|
||||
44
.gitea/workflows/deploy-production.yml
Normal file
44
.gitea/workflows/deploy-production.yml
Normal file
@@ -0,0 +1,44 @@
|
||||
name: Deploy to Production
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Deploy to Production Server
|
||||
uses: appleboy/ssh-action@v1.0.3
|
||||
with:
|
||||
host: ${{ secrets.PROD_HOST }}
|
||||
username: ${{ secrets.PROD_USER }}
|
||||
key: ${{ secrets.PROD_SSH_KEY }}
|
||||
script: |
|
||||
set -euo pipefail
|
||||
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
echo "Pulling latest changes..."
|
||||
git fetch origin main
|
||||
git reset --hard origin/main
|
||||
|
||||
echo "Activating virtual environment..."
|
||||
source .venv/bin/activate
|
||||
|
||||
echo "Installing dependencies..."
|
||||
pip install -r requirements.txt --quiet
|
||||
|
||||
echo "Running dbt models..."
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
echo "Restarting application..."
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
echo "Waiting for health check..."
|
||||
sleep 10
|
||||
curl -f http://localhost:8050/health || exit 1
|
||||
|
||||
echo "Production deployment complete!"
|
||||
44
.gitea/workflows/deploy-staging.yml
Normal file
44
.gitea/workflows/deploy-staging.yml
Normal file
@@ -0,0 +1,44 @@
|
||||
name: Deploy to Staging
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- staging
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Deploy to Staging Server
|
||||
uses: appleboy/ssh-action@v1.0.3
|
||||
with:
|
||||
host: ${{ secrets.STAGING_HOST }}
|
||||
username: ${{ secrets.STAGING_USER }}
|
||||
key: ${{ secrets.STAGING_SSH_KEY }}
|
||||
script: |
|
||||
set -euo pipefail
|
||||
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
echo "Pulling latest changes..."
|
||||
git fetch origin staging
|
||||
git reset --hard origin/staging
|
||||
|
||||
echo "Activating virtual environment..."
|
||||
source .venv/bin/activate
|
||||
|
||||
echo "Installing dependencies..."
|
||||
pip install -r requirements.txt --quiet
|
||||
|
||||
echo "Running dbt models..."
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
echo "Restarting application..."
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
echo "Waiting for health check..."
|
||||
sleep 10
|
||||
curl -f http://localhost:8050/health || exit 1
|
||||
|
||||
echo "Staging deployment complete!"
|
||||
@@ -18,7 +18,7 @@ Working context for Claude Code on the Analytics Portfolio project.
|
||||
|
||||
```bash
|
||||
make setup # Install deps, create .env, init pre-commit
|
||||
make docker-up # Start PostgreSQL + PostGIS
|
||||
make docker-up # Start PostgreSQL + PostGIS (auto-detects x86/ARM)
|
||||
make docker-down # Stop containers
|
||||
make db-init # Initialize database schema
|
||||
make run # Start Dash dev server
|
||||
@@ -193,6 +193,7 @@ notebooks/ # Data documentation (Phase 6)
|
||||
- SQLAlchemy 2.0 + Pydantic 2.0 only (never mix 1.x APIs)
|
||||
- PostGIS extension required in database
|
||||
- Docker Compose V2 format (no `version` field)
|
||||
- **Multi-architecture support**: `make docker-up` auto-detects CPU architecture and uses the appropriate PostGIS image (x86_64: `postgis/postgis`, ARM64: `imresamu/postgis`)
|
||||
|
||||
---
|
||||
|
||||
|
||||
21
LICENSE
Normal file
21
LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024-2025 Leo Miranda
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
27
Makefile
27
Makefile
@@ -1,4 +1,4 @@
|
||||
.PHONY: setup docker-up docker-down db-init load-data run test dbt-run dbt-test lint format ci deploy clean help
|
||||
.PHONY: setup docker-up docker-down db-init load-data run test dbt-run dbt-test lint format ci deploy clean help logs run-detached etl-toronto
|
||||
|
||||
# Default target
|
||||
.DEFAULT_GOAL := help
|
||||
@@ -8,6 +8,17 @@ PYTHON := python3
|
||||
PIP := pip
|
||||
DOCKER_COMPOSE := docker compose
|
||||
|
||||
# Architecture detection for Docker images
|
||||
ARCH := $(shell uname -m)
|
||||
ifeq ($(ARCH),aarch64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else ifeq ($(ARCH),arm64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else
|
||||
POSTGIS_IMAGE := postgis/postgis:16-3.4
|
||||
endif
|
||||
export POSTGIS_IMAGE
|
||||
|
||||
# Colors for output
|
||||
BLUE := \033[0;34m
|
||||
GREEN := \033[0;32m
|
||||
@@ -39,6 +50,7 @@ setup: ## Install dependencies, create .env, init pre-commit
|
||||
|
||||
docker-up: ## Start PostgreSQL + PostGIS containers
|
||||
@echo "$(GREEN)Starting database containers...$(NC)"
|
||||
@echo "$(BLUE)Architecture: $(ARCH) -> Using image: $(POSTGIS_IMAGE)$(NC)"
|
||||
$(DOCKER_COMPOSE) up -d
|
||||
@echo "$(GREEN)Waiting for database to be ready...$(NC)"
|
||||
@sleep 3
|
||||
@@ -139,6 +151,19 @@ ci: ## Run all checks (lint, typecheck, test)
|
||||
$(MAKE) test
|
||||
@echo "$(GREEN)All checks passed!$(NC)"
|
||||
|
||||
# =============================================================================
|
||||
# Operations
|
||||
# =============================================================================
|
||||
|
||||
logs: ## Follow docker compose logs (usage: make logs or make logs SERVICE=postgres)
|
||||
@./scripts/logs.sh $(SERVICE)
|
||||
|
||||
run-detached: ## Start containers and wait for health check
|
||||
@./scripts/run-detached.sh
|
||||
|
||||
etl-toronto: ## Run Toronto ETL pipeline (usage: make etl-toronto MODE=--full)
|
||||
@./scripts/etl/toronto.sh $(MODE)
|
||||
|
||||
# =============================================================================
|
||||
# Deployment
|
||||
# =============================================================================
|
||||
|
||||
40
README.md
40
README.md
@@ -1,5 +1,9 @@
|
||||
# Analytics Portfolio
|
||||
|
||||
[](https://gitea.hotserv.cloud/lmiranda/personal-portfolio/actions)
|
||||
|
||||
**Live Demo:** [leodata.science](https://leodata.science)
|
||||
|
||||
A personal portfolio website showcasing data engineering and visualization capabilities, featuring an interactive Toronto Neighbourhood Dashboard.
|
||||
|
||||
## Live Pages
|
||||
@@ -32,6 +36,42 @@ An interactive choropleth dashboard analyzing Toronto's 158 official neighbourho
|
||||
- Toronto Police Service (crime statistics)
|
||||
- CMHC Rental Market Survey (rental data by zone)
|
||||
|
||||
## Architecture
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
subgraph Sources
|
||||
A1[City of Toronto API]
|
||||
A2[Toronto Police API]
|
||||
A3[CMHC Data]
|
||||
end
|
||||
|
||||
subgraph ETL
|
||||
B1[Parsers]
|
||||
B2[Loaders]
|
||||
end
|
||||
|
||||
subgraph Database
|
||||
C1[(PostgreSQL/PostGIS)]
|
||||
C2[dbt Models]
|
||||
end
|
||||
|
||||
subgraph Application
|
||||
D1[Dash App]
|
||||
D2[Plotly Figures]
|
||||
end
|
||||
|
||||
A1 & A2 & A3 --> B1 --> B2 --> C1 --> C2 --> D1 --> D2
|
||||
```
|
||||
|
||||
**Pipeline Stages:**
|
||||
- **Sources**: External APIs and data files (City of Toronto, Toronto Police, CMHC)
|
||||
- **ETL**: Python parsers extract and validate data; loaders persist to database
|
||||
- **Database**: PostgreSQL with PostGIS for geospatial; dbt transforms raw → staging → marts
|
||||
- **Application**: Dash serves interactive dashboards with Plotly visualizations
|
||||
|
||||
For detailed database schema, see [docs/DATABASE_SCHEMA.md](docs/DATABASE_SCHEMA.md).
|
||||
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
|
||||
60
dbt/models/intermediate/int_census__toronto_cma.sql
Normal file
60
dbt/models/intermediate/int_census__toronto_cma.sql
Normal file
@@ -0,0 +1,60 @@
|
||||
-- Intermediate: Toronto CMA census statistics by year
|
||||
-- Provides city-wide averages for metrics not available at neighbourhood level
|
||||
-- Used when neighbourhood-level data is unavailable (e.g., median household income)
|
||||
-- Grain: One row per year
|
||||
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
-- Census data is only available for 2016 and 2021
|
||||
-- Map each analysis year to the appropriate census year
|
||||
year_to_census as (
|
||||
select
|
||||
y.year,
|
||||
case
|
||||
when y.year <= 2018 then 2016
|
||||
else 2021
|
||||
end as census_year
|
||||
from years y
|
||||
),
|
||||
|
||||
-- Toronto CMA median household income from Statistics Canada
|
||||
-- Source: Census Profile Table 98-316-X2021001
|
||||
-- 2016: $65,829 (from Census Profile)
|
||||
-- 2021: $84,000 (from Census Profile)
|
||||
cma_income as (
|
||||
select 2016 as census_year, 65829 as median_household_income union all
|
||||
select 2021 as census_year, 84000 as median_household_income
|
||||
),
|
||||
|
||||
-- City-wide aggregates from loaded neighbourhood data
|
||||
city_aggregates as (
|
||||
select
|
||||
census_year,
|
||||
sum(population) as total_population,
|
||||
avg(population_density) as avg_population_density,
|
||||
avg(unemployment_rate) as avg_unemployment_rate
|
||||
from census
|
||||
where population is not null
|
||||
group by census_year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
y.year,
|
||||
y.census_year,
|
||||
ci.median_household_income,
|
||||
ca.total_population,
|
||||
ca.avg_population_density,
|
||||
ca.avg_unemployment_rate
|
||||
from year_to_census y
|
||||
left join cma_income ci on y.census_year = ci.census_year
|
||||
left join city_aggregates ca on y.census_year = ca.census_year
|
||||
)
|
||||
|
||||
select * from final
|
||||
@@ -34,7 +34,7 @@ amenity_scores as (
|
||||
n.population,
|
||||
n.land_area_sqkm,
|
||||
|
||||
a.year,
|
||||
coalesce(a.year, 2021) as year,
|
||||
|
||||
-- Raw counts
|
||||
a.parks_count,
|
||||
|
||||
@@ -64,15 +64,17 @@ crime_summary as (
|
||||
w.robbery_count,
|
||||
w.theft_over_count,
|
||||
w.homicide_count,
|
||||
w.avg_rate_per_100k,
|
||||
w.yoy_change_pct,
|
||||
|
||||
-- Crime rate per 100K population
|
||||
-- Crime rate per 100K population (use source data avg, or calculate if population available)
|
||||
coalesce(
|
||||
w.avg_rate_per_100k,
|
||||
case
|
||||
when n.population > 0
|
||||
then round(w.total_incidents::numeric / n.population * 100000, 2)
|
||||
else null
|
||||
end as crime_rate_per_100k
|
||||
end
|
||||
) as crime_rate_per_100k
|
||||
|
||||
from neighbourhoods n
|
||||
inner join with_yoy w on n.neighbourhood_id = w.neighbourhood_id
|
||||
|
||||
@@ -17,7 +17,8 @@ demographics as (
|
||||
n.geometry,
|
||||
n.land_area_sqkm,
|
||||
|
||||
c.census_year,
|
||||
-- Use census_year from census data, or fall back to dim_neighbourhood's year
|
||||
coalesce(c.census_year, n.census_year, 2021) as census_year,
|
||||
c.population,
|
||||
c.population_density,
|
||||
c.median_household_income,
|
||||
|
||||
@@ -20,7 +20,7 @@ housing as (
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
|
||||
coalesce(r.year, c.census_year) as year,
|
||||
coalesce(r.year, c.census_year, 2021) as year,
|
||||
|
||||
-- Census housing metrics
|
||||
c.pct_owner_occupied,
|
||||
|
||||
25
dbt/models/intermediate/int_rentals__toronto_cma.sql
Normal file
25
dbt/models/intermediate/int_rentals__toronto_cma.sql
Normal file
@@ -0,0 +1,25 @@
|
||||
-- Intermediate: Toronto CMA rental metrics by year
|
||||
-- Aggregates rental data to city-wide averages by year
|
||||
-- Source: StatCan CMHC data at CMA level
|
||||
-- Grain: One row per year
|
||||
|
||||
with rentals as (
|
||||
select * from {{ ref('stg_cmhc__rentals') }}
|
||||
),
|
||||
|
||||
-- Pivot bedroom types to columns
|
||||
yearly_rentals as (
|
||||
select
|
||||
year,
|
||||
max(case when bedroom_type = 'bachelor' then avg_rent end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = '1bed' then avg_rent end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = '3bed' then avg_rent end) as avg_rent_3bed,
|
||||
-- Use 2-bedroom as standard reference
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_standard,
|
||||
max(vacancy_rate) as vacancy_rate
|
||||
from rentals
|
||||
group by year
|
||||
)
|
||||
|
||||
select * from yearly_rentals
|
||||
11
dbt/models/intermediate/int_year_spine.sql
Normal file
11
dbt/models/intermediate/int_year_spine.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
-- Intermediate: Year spine for analysis
|
||||
-- Creates a row for each year from 2014-2025
|
||||
-- Used to drive time-series analysis across all data sources
|
||||
|
||||
with years as (
|
||||
-- Generate years from available data sources
|
||||
-- Crime data: 2014-2024, Rentals: 2019-2025
|
||||
select generate_series(2014, 2025) as year
|
||||
)
|
||||
|
||||
select year from years
|
||||
@@ -1,79 +1,119 @@
|
||||
-- Mart: Neighbourhood Overview with Composite Livability Score
|
||||
-- Dashboard Tab: Overview
|
||||
-- Grain: One row per neighbourhood per year
|
||||
-- Time spine: Years 2014-2025 (driven by crime/rental data availability)
|
||||
|
||||
with demographics as (
|
||||
select * from {{ ref('int_neighbourhood__demographics') }}
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
housing as (
|
||||
select * from {{ ref('int_neighbourhood__housing') }}
|
||||
neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
-- Create base: all neighbourhoods × all years
|
||||
neighbourhood_years as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
y.year
|
||||
from neighbourhoods n
|
||||
cross join years y
|
||||
),
|
||||
|
||||
-- Census data (available for 2016, 2021)
|
||||
-- For each year, use the most recent census data available
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
census_mapped as (
|
||||
select
|
||||
ny.neighbourhood_id,
|
||||
ny.year,
|
||||
c.population,
|
||||
c.unemployment_rate,
|
||||
c.pct_bachelors_or_higher as education_bachelors_pct
|
||||
from neighbourhood_years ny
|
||||
left join census c on ny.neighbourhood_id = c.neighbourhood_id
|
||||
-- Use census year <= analysis year, prefer most recent
|
||||
and c.census_year = (
|
||||
select max(c2.census_year)
|
||||
from {{ ref('stg_toronto__census') }} c2
|
||||
where c2.neighbourhood_id = ny.neighbourhood_id
|
||||
and c2.census_year <= ny.year
|
||||
)
|
||||
),
|
||||
|
||||
-- CMA-level census data (for income - not available at neighbourhood level)
|
||||
cma_census as (
|
||||
select * from {{ ref('int_census__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Crime data (2014-2024)
|
||||
crime as (
|
||||
select * from {{ ref('int_neighbourhood__crime_summary') }}
|
||||
),
|
||||
|
||||
amenities as (
|
||||
select * from {{ ref('int_neighbourhood__amenity_scores') }}
|
||||
-- Rentals (2019-2025) - CMA level applied to all neighbourhoods
|
||||
rentals as (
|
||||
select * from {{ ref('int_rentals__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Compute percentile ranks for scoring components
|
||||
percentiles as (
|
||||
-- Compute scores
|
||||
scored as (
|
||||
select
|
||||
d.neighbourhood_id,
|
||||
d.neighbourhood_name,
|
||||
d.geometry,
|
||||
d.census_year as year,
|
||||
d.population,
|
||||
d.median_household_income,
|
||||
ny.neighbourhood_id,
|
||||
ny.neighbourhood_name,
|
||||
ny.geometry,
|
||||
ny.year,
|
||||
cm.population,
|
||||
-- Use CMA-level income (neighbourhood-level not available in Toronto Open Data)
|
||||
cma.median_household_income,
|
||||
|
||||
-- Safety score: inverse of crime rate (higher = safer)
|
||||
case
|
||||
when c.crime_rate_per_100k is not null
|
||||
when cr.crime_rate_per_100k is not null
|
||||
then 100 - percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by c.crime_rate_per_100k
|
||||
partition by ny.year
|
||||
order by cr.crime_rate_per_100k
|
||||
) * 100
|
||||
else null
|
||||
end as safety_score,
|
||||
|
||||
-- Affordability score: inverse of rent-to-income ratio
|
||||
-- Using CMA-level income since neighbourhood-level not available
|
||||
case
|
||||
when h.rent_to_income_pct is not null
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then 100 - percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by h.rent_to_income_pct
|
||||
partition by ny.year
|
||||
order by (r.avg_rent_standard * 12 / cma.median_household_income)
|
||||
) * 100
|
||||
else null
|
||||
end as affordability_score,
|
||||
|
||||
-- Amenity score: based on amenities per capita
|
||||
-- Raw metrics
|
||||
cr.crime_rate_per_100k,
|
||||
case
|
||||
when a.total_amenities_per_1000 is not null
|
||||
then percent_rank() over (
|
||||
partition by d.census_year
|
||||
order by a.total_amenities_per_1000
|
||||
) * 100
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then round((r.avg_rent_standard * 12 / cma.median_household_income) * 100, 2)
|
||||
else null
|
||||
end as amenity_score,
|
||||
end as rent_to_income_pct,
|
||||
r.avg_rent_standard as avg_rent_2bed,
|
||||
r.vacancy_rate
|
||||
|
||||
-- Raw metrics for reference
|
||||
c.crime_rate_per_100k,
|
||||
h.rent_to_income_pct,
|
||||
h.avg_rent_2bed,
|
||||
a.total_amenities_per_1000
|
||||
|
||||
from demographics d
|
||||
left join housing h
|
||||
on d.neighbourhood_id = h.neighbourhood_id
|
||||
and d.census_year = h.year
|
||||
left join crime c
|
||||
on d.neighbourhood_id = c.neighbourhood_id
|
||||
and d.census_year = c.year
|
||||
left join amenities a
|
||||
on d.neighbourhood_id = a.neighbourhood_id
|
||||
and d.census_year = a.year
|
||||
from neighbourhood_years ny
|
||||
left join census_mapped cm
|
||||
on ny.neighbourhood_id = cm.neighbourhood_id
|
||||
and ny.year = cm.year
|
||||
left join cma_census cma
|
||||
on ny.year = cma.year
|
||||
left join crime cr
|
||||
on ny.neighbourhood_id = cr.neighbourhood_id
|
||||
and ny.year = cr.year
|
||||
left join rentals r
|
||||
on ny.year = r.year
|
||||
),
|
||||
|
||||
final as (
|
||||
@@ -88,13 +128,14 @@ final as (
|
||||
-- Component scores (0-100)
|
||||
round(safety_score::numeric, 1) as safety_score,
|
||||
round(affordability_score::numeric, 1) as affordability_score,
|
||||
round(amenity_score::numeric, 1) as amenity_score,
|
||||
-- Amenity score not available at this level, use placeholder
|
||||
50.0 as amenity_score,
|
||||
|
||||
-- Composite livability score: safety (30%), affordability (40%), amenities (30%)
|
||||
-- Composite livability score: safety (40%), affordability (40%), amenities (20%)
|
||||
round(
|
||||
(coalesce(safety_score, 50) * 0.30 +
|
||||
(coalesce(safety_score, 50) * 0.40 +
|
||||
coalesce(affordability_score, 50) * 0.40 +
|
||||
coalesce(amenity_score, 50) * 0.30)::numeric,
|
||||
50 * 0.20)::numeric,
|
||||
1
|
||||
) as livability_score,
|
||||
|
||||
@@ -102,9 +143,10 @@ final as (
|
||||
crime_rate_per_100k,
|
||||
rent_to_income_pct,
|
||||
avg_rent_2bed,
|
||||
total_amenities_per_1000
|
||||
vacancy_rate,
|
||||
null::numeric as total_amenities_per_1000
|
||||
|
||||
from percentiles
|
||||
from scored
|
||||
)
|
||||
|
||||
select * from final
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
-- Staged CMHC rental market survey data
|
||||
-- Source: fact_rentals table loaded from CMHC CSV exports
|
||||
-- Source: fact_rentals table loaded from CMHC/StatCan
|
||||
-- Grain: One row per zone per bedroom type per survey year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_rentals') }}
|
||||
select
|
||||
f.*,
|
||||
t.year as survey_year
|
||||
from {{ source('toronto_housing', 'fact_rentals') }} f
|
||||
join {{ source('toronto_housing', 'dim_time') }} t on f.date_key = t.date_key
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -11,6 +15,7 @@ staged as (
|
||||
id as rental_id,
|
||||
date_key,
|
||||
zone_key,
|
||||
survey_year as year,
|
||||
bedroom_type,
|
||||
universe as rental_universe,
|
||||
avg_rent,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
services:
|
||||
db:
|
||||
image: postgis/postgis:16-3.4
|
||||
image: ${POSTGIS_IMAGE:-postgis/postgis:16-3.4}
|
||||
container_name: portfolio-db
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
|
||||
307
docs/DATABASE_SCHEMA.md
Normal file
307
docs/DATABASE_SCHEMA.md
Normal file
@@ -0,0 +1,307 @@
|
||||
# Database Schema
|
||||
|
||||
This document describes the PostgreSQL/PostGIS database schema for the Toronto Neighbourhood Dashboard.
|
||||
|
||||
## Entity Relationship Diagram
|
||||
|
||||
```mermaid
|
||||
erDiagram
|
||||
dim_time {
|
||||
int date_key PK
|
||||
date full_date UK
|
||||
int year
|
||||
int month
|
||||
int quarter
|
||||
string month_name
|
||||
bool is_month_start
|
||||
}
|
||||
|
||||
dim_cmhc_zone {
|
||||
int zone_key PK
|
||||
string zone_code UK
|
||||
string zone_name
|
||||
geometry geometry
|
||||
}
|
||||
|
||||
dim_neighbourhood {
|
||||
int neighbourhood_id PK
|
||||
string name
|
||||
geometry geometry
|
||||
int population
|
||||
numeric land_area_sqkm
|
||||
numeric pop_density_per_sqkm
|
||||
numeric pct_bachelors_or_higher
|
||||
numeric median_household_income
|
||||
numeric pct_owner_occupied
|
||||
numeric pct_renter_occupied
|
||||
int census_year
|
||||
}
|
||||
|
||||
dim_policy_event {
|
||||
int event_id PK
|
||||
date event_date
|
||||
date effective_date
|
||||
string level
|
||||
string category
|
||||
string title
|
||||
text description
|
||||
string expected_direction
|
||||
string source_url
|
||||
string confidence
|
||||
}
|
||||
|
||||
fact_rentals {
|
||||
int id PK
|
||||
int date_key FK
|
||||
int zone_key FK
|
||||
string bedroom_type
|
||||
int universe
|
||||
numeric avg_rent
|
||||
numeric median_rent
|
||||
numeric vacancy_rate
|
||||
numeric availability_rate
|
||||
numeric turnover_rate
|
||||
numeric rent_change_pct
|
||||
string reliability_code
|
||||
}
|
||||
|
||||
fact_census {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
int census_year
|
||||
int population
|
||||
numeric population_density
|
||||
numeric median_household_income
|
||||
numeric average_household_income
|
||||
numeric unemployment_rate
|
||||
numeric pct_bachelors_or_higher
|
||||
numeric pct_owner_occupied
|
||||
numeric pct_renter_occupied
|
||||
numeric median_age
|
||||
numeric average_dwelling_value
|
||||
}
|
||||
|
||||
fact_crime {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
int year
|
||||
string crime_type
|
||||
int count
|
||||
numeric rate_per_100k
|
||||
}
|
||||
|
||||
fact_amenities {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
string amenity_type
|
||||
int count
|
||||
int year
|
||||
}
|
||||
|
||||
bridge_cmhc_neighbourhood {
|
||||
int id PK
|
||||
string cmhc_zone_code FK
|
||||
int neighbourhood_id FK
|
||||
numeric weight
|
||||
}
|
||||
|
||||
dim_time ||--o{ fact_rentals : "date_key"
|
||||
dim_cmhc_zone ||--o{ fact_rentals : "zone_key"
|
||||
dim_neighbourhood ||--o{ fact_census : "neighbourhood_id"
|
||||
dim_neighbourhood ||--o{ fact_crime : "neighbourhood_id"
|
||||
dim_neighbourhood ||--o{ fact_amenities : "neighbourhood_id"
|
||||
dim_cmhc_zone ||--o{ bridge_cmhc_neighbourhood : "zone_code"
|
||||
dim_neighbourhood ||--o{ bridge_cmhc_neighbourhood : "neighbourhood_id"
|
||||
```
|
||||
|
||||
## Schema Layers
|
||||
|
||||
### Raw Schema
|
||||
|
||||
Raw data is loaded directly from external sources without transformation:
|
||||
|
||||
| Table | Source | Description |
|
||||
|-------|--------|-------------|
|
||||
| `raw.neighbourhoods` | City of Toronto API | GeoJSON neighbourhood boundaries |
|
||||
| `raw.census_profiles` | City of Toronto API | Census profile data |
|
||||
| `raw.crime_data` | Toronto Police API | Crime statistics by neighbourhood |
|
||||
| `raw.cmhc_rentals` | CMHC Data Files | Rental market survey data |
|
||||
|
||||
### Staging Schema (dbt)
|
||||
|
||||
Staging models provide 1:1 cleaned representations of source data:
|
||||
|
||||
| Model | Source Table | Purpose |
|
||||
|-------|-------------|---------|
|
||||
| `stg_toronto__neighbourhoods` | raw.neighbourhoods | Cleaned boundaries with standardized names |
|
||||
| `stg_toronto__census` | raw.census_profiles | Typed census metrics |
|
||||
| `stg_cmhc__rentals` | raw.cmhc_rentals | Validated rental data |
|
||||
| `stg_police__crimes` | raw.crime_data | Standardized crime categories |
|
||||
|
||||
### Marts Schema (dbt)
|
||||
|
||||
Analytical tables ready for dashboard consumption:
|
||||
|
||||
| Model | Grain | Purpose |
|
||||
|-------|-------|---------|
|
||||
| `mart_neighbourhood_summary` | neighbourhood | Composite livability scores |
|
||||
| `mart_rental_trends` | zone × month | Time-series rental analysis |
|
||||
| `mart_crime_rates` | neighbourhood × year | Crime rate calculations |
|
||||
| `mart_amenity_density` | neighbourhood | Amenity accessibility scores |
|
||||
|
||||
## Table Details
|
||||
|
||||
### Dimension Tables
|
||||
|
||||
#### dim_time
|
||||
Time dimension for date-based analysis. Grain: one row per month.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| date_key | INTEGER | PK | Surrogate key (YYYYMM format) |
|
||||
| full_date | DATE | UNIQUE, NOT NULL | First day of month |
|
||||
| year | INTEGER | NOT NULL | Calendar year |
|
||||
| month | INTEGER | NOT NULL | Month number (1-12) |
|
||||
| quarter | INTEGER | NOT NULL | Quarter (1-4) |
|
||||
| month_name | VARCHAR(20) | NOT NULL | Month name |
|
||||
| is_month_start | BOOLEAN | DEFAULT TRUE | Always true (monthly grain) |
|
||||
|
||||
#### dim_cmhc_zone
|
||||
CMHC rental market zones (~20 zones covering Toronto).
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| zone_key | INTEGER | PK, AUTO | Surrogate key |
|
||||
| zone_code | VARCHAR(10) | UNIQUE, NOT NULL | CMHC zone identifier |
|
||||
| zone_name | VARCHAR(100) | NOT NULL | Zone display name |
|
||||
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS zone boundary |
|
||||
|
||||
#### dim_neighbourhood
|
||||
Toronto's 158 official neighbourhoods.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| neighbourhood_id | INTEGER | PK | City-assigned ID |
|
||||
| name | VARCHAR(100) | NOT NULL | Neighbourhood name |
|
||||
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS boundary |
|
||||
| population | INTEGER | | Total population |
|
||||
| land_area_sqkm | NUMERIC(10,4) | | Area in km² |
|
||||
| pop_density_per_sqkm | NUMERIC(10,2) | | Population density |
|
||||
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
|
||||
| median_household_income | NUMERIC(12,2) | | Median income |
|
||||
| pct_owner_occupied | NUMERIC(5,2) | | Owner occupancy rate |
|
||||
| pct_renter_occupied | NUMERIC(5,2) | | Renter occupancy rate |
|
||||
| census_year | INTEGER | DEFAULT 2021 | Census reference year |
|
||||
|
||||
#### dim_policy_event
|
||||
Policy events for time-series annotation (rent control, interest rates, etc.).
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| event_id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| event_date | DATE | NOT NULL | Announcement date |
|
||||
| effective_date | DATE | | Implementation date |
|
||||
| level | VARCHAR(20) | NOT NULL | federal/provincial/municipal |
|
||||
| category | VARCHAR(20) | NOT NULL | monetary/tax/regulatory/supply/economic |
|
||||
| title | VARCHAR(200) | NOT NULL | Event title |
|
||||
| description | TEXT | | Detailed description |
|
||||
| expected_direction | VARCHAR(10) | NOT NULL | bearish/bullish/neutral |
|
||||
| source_url | VARCHAR(500) | | Reference link |
|
||||
| confidence | VARCHAR(10) | DEFAULT 'medium' | high/medium/low |
|
||||
|
||||
### Fact Tables
|
||||
|
||||
#### fact_rentals
|
||||
CMHC rental market survey data. Grain: zone × bedroom type × survey date.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| date_key | INTEGER | FK → dim_time | Survey date reference |
|
||||
| zone_key | INTEGER | FK → dim_cmhc_zone | CMHC zone reference |
|
||||
| bedroom_type | VARCHAR(20) | NOT NULL | bachelor/1-bed/2-bed/3+bed/total |
|
||||
| universe | INTEGER | | Total rental units |
|
||||
| avg_rent | NUMERIC(10,2) | | Average rent |
|
||||
| median_rent | NUMERIC(10,2) | | Median rent |
|
||||
| vacancy_rate | NUMERIC(5,2) | | Vacancy percentage |
|
||||
| availability_rate | NUMERIC(5,2) | | Availability percentage |
|
||||
| turnover_rate | NUMERIC(5,2) | | Turnover percentage |
|
||||
| rent_change_pct | NUMERIC(5,2) | | Year-over-year change |
|
||||
| reliability_code | VARCHAR(2) | | CMHC data quality code |
|
||||
|
||||
#### fact_census
|
||||
Census statistics. Grain: neighbourhood × census year.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| census_year | INTEGER | NOT NULL | 2016, 2021, etc. |
|
||||
| population | INTEGER | | Total population |
|
||||
| population_density | NUMERIC(10,2) | | People per km² |
|
||||
| median_household_income | NUMERIC(12,2) | | Median income |
|
||||
| average_household_income | NUMERIC(12,2) | | Average income |
|
||||
| unemployment_rate | NUMERIC(5,2) | | Unemployment % |
|
||||
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
|
||||
| pct_owner_occupied | NUMERIC(5,2) | | Owner rate |
|
||||
| pct_renter_occupied | NUMERIC(5,2) | | Renter rate |
|
||||
| median_age | NUMERIC(5,2) | | Median resident age |
|
||||
| average_dwelling_value | NUMERIC(12,2) | | Average home value |
|
||||
|
||||
#### fact_crime
|
||||
Crime statistics. Grain: neighbourhood × year × crime type.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| year | INTEGER | NOT NULL | Calendar year |
|
||||
| crime_type | VARCHAR(50) | NOT NULL | Crime category |
|
||||
| count | INTEGER | NOT NULL | Number of incidents |
|
||||
| rate_per_100k | NUMERIC(10,2) | | Rate per 100k population |
|
||||
|
||||
#### fact_amenities
|
||||
Amenity counts. Grain: neighbourhood × amenity type × year.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| amenity_type | VARCHAR(50) | NOT NULL | parks/schools/transit/etc. |
|
||||
| count | INTEGER | NOT NULL | Number of amenities |
|
||||
| year | INTEGER | NOT NULL | Reference year |
|
||||
|
||||
### Bridge Tables
|
||||
|
||||
#### bridge_cmhc_neighbourhood
|
||||
Maps CMHC zones to neighbourhoods with area-based weights for data disaggregation.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| cmhc_zone_code | VARCHAR(10) | FK → dim_cmhc_zone | Zone reference |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| weight | NUMERIC(5,4) | NOT NULL | Proportional weight (0-1) |
|
||||
|
||||
## Indexes
|
||||
|
||||
| Table | Index | Columns | Purpose |
|
||||
|-------|-------|---------|---------|
|
||||
| fact_rentals | ix_fact_rentals_date_zone | date_key, zone_key | Time-series queries |
|
||||
| fact_census | ix_fact_census_neighbourhood_year | neighbourhood_id, census_year | Census lookups |
|
||||
| fact_crime | ix_fact_crime_neighbourhood_year | neighbourhood_id, year | Crime trends |
|
||||
| fact_crime | ix_fact_crime_type | crime_type | Crime filtering |
|
||||
| fact_amenities | ix_fact_amenities_neighbourhood_year | neighbourhood_id, year | Amenity queries |
|
||||
| fact_amenities | ix_fact_amenities_type | amenity_type | Amenity filtering |
|
||||
| bridge_cmhc_neighbourhood | ix_bridge_cmhc_zone | cmhc_zone_code | Zone lookups |
|
||||
| bridge_cmhc_neighbourhood | ix_bridge_neighbourhood | neighbourhood_id | Neighbourhood lookups |
|
||||
|
||||
## PostGIS Extensions
|
||||
|
||||
The database requires PostGIS for geospatial operations:
|
||||
|
||||
```sql
|
||||
CREATE EXTENSION IF NOT EXISTS postgis;
|
||||
```
|
||||
|
||||
All geometry columns use SRID 4326 (WGS84) for compatibility with web mapping libraries.
|
||||
200
docs/runbooks/adding-dashboard.md
Normal file
200
docs/runbooks/adding-dashboard.md
Normal file
@@ -0,0 +1,200 @@
|
||||
# Runbook: Adding a New Dashboard
|
||||
|
||||
This runbook describes how to add a new data dashboard to the portfolio application.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- [ ] Data sources identified and accessible
|
||||
- [ ] Database schema designed
|
||||
- [ ] Basic Dash/Plotly familiarity
|
||||
|
||||
## Directory Structure
|
||||
|
||||
Create the following structure under `portfolio_app/`:
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
├── pages/
|
||||
│ └── {dashboard_name}/
|
||||
│ ├── dashboard.py # Main layout with tabs
|
||||
│ ├── methodology.py # Data sources and methods page
|
||||
│ ├── tabs/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── overview.py # Overview tab layout
|
||||
│ │ └── ... # Additional tab layouts
|
||||
│ └── callbacks/
|
||||
│ ├── __init__.py
|
||||
│ └── ... # Callback modules
|
||||
├── {dashboard_name}/ # Data logic (outside pages/)
|
||||
│ ├── __init__.py
|
||||
│ ├── parsers/ # API/CSV extraction
|
||||
│ │ └── __init__.py
|
||||
│ ├── loaders/ # Database operations
|
||||
│ │ └── __init__.py
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ │ └── __init__.py
|
||||
│ └── models/ # SQLAlchemy ORM
|
||||
│ └── __init__.py
|
||||
```
|
||||
|
||||
## Step-by-Step Checklist
|
||||
|
||||
### 1. Data Layer
|
||||
|
||||
- [ ] Create Pydantic schemas in `{dashboard_name}/schemas/`
|
||||
- [ ] Create SQLAlchemy models in `{dashboard_name}/models/`
|
||||
- [ ] Create parsers in `{dashboard_name}/parsers/`
|
||||
- [ ] Create loaders in `{dashboard_name}/loaders/`
|
||||
- [ ] Add database migrations if needed
|
||||
|
||||
### 2. dbt Models
|
||||
|
||||
Create dbt models in `dbt/models/`:
|
||||
|
||||
- [ ] `staging/stg_{source}__{entity}.sql` - Raw data cleaning
|
||||
- [ ] `intermediate/int_{domain}__{transform}.sql` - Business logic
|
||||
- [ ] `marts/mart_{domain}.sql` - Final analytical tables
|
||||
|
||||
Follow naming conventions:
|
||||
- Staging: `stg_{source}__{entity}`
|
||||
- Intermediate: `int_{domain}__{transform}`
|
||||
- Marts: `mart_{domain}`
|
||||
|
||||
### 3. Visualization Layer
|
||||
|
||||
- [ ] Create figure factories in `figures/` (or reuse existing)
|
||||
- [ ] Follow the factory pattern: `create_{chart_type}_figure(data, **kwargs)`
|
||||
|
||||
### 4. Dashboard Pages
|
||||
|
||||
#### Main Dashboard (`pages/{dashboard_name}/dashboard.py`)
|
||||
|
||||
```python
|
||||
import dash
|
||||
from dash import html, dcc
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
dash.register_page(
|
||||
__name__,
|
||||
path="/{dashboard_name}",
|
||||
title="{Dashboard Title}",
|
||||
description="{Description}"
|
||||
)
|
||||
|
||||
def layout():
|
||||
return dmc.Container([
|
||||
# Header
|
||||
dmc.Title("{Dashboard Title}", order=1),
|
||||
|
||||
# Tabs
|
||||
dmc.Tabs([
|
||||
dmc.TabsList([
|
||||
dmc.TabsTab("Overview", value="overview"),
|
||||
# Add more tabs
|
||||
]),
|
||||
dmc.TabsPanel(overview_tab(), value="overview"),
|
||||
# Add more panels
|
||||
], value="overview"),
|
||||
])
|
||||
```
|
||||
|
||||
#### Tab Layouts (`pages/{dashboard_name}/tabs/`)
|
||||
|
||||
- [ ] Create one file per tab
|
||||
- [ ] Export layout function from each
|
||||
|
||||
#### Callbacks (`pages/{dashboard_name}/callbacks/`)
|
||||
|
||||
- [ ] Create callback modules for interactivity
|
||||
- [ ] Import and register in dashboard.py
|
||||
|
||||
### 5. Navigation
|
||||
|
||||
Add to sidebar in `components/sidebar.py`:
|
||||
|
||||
```python
|
||||
dmc.NavLink(
|
||||
label="{Dashboard Name}",
|
||||
href="/{dashboard_name}",
|
||||
icon=DashIconify(icon="..."),
|
||||
)
|
||||
```
|
||||
|
||||
### 6. Documentation
|
||||
|
||||
- [ ] Create methodology page (`pages/{dashboard_name}/methodology.py`)
|
||||
- [ ] Document data sources
|
||||
- [ ] Document transformation logic
|
||||
- [ ] Add notebooks to `notebooks/{dashboard_name}/` if needed
|
||||
|
||||
### 7. Testing
|
||||
|
||||
- [ ] Add unit tests for parsers
|
||||
- [ ] Add unit tests for loaders
|
||||
- [ ] Add integration tests for callbacks
|
||||
- [ ] Run `make test`
|
||||
|
||||
### 8. Final Verification
|
||||
|
||||
- [ ] All pages render without errors
|
||||
- [ ] All callbacks respond correctly
|
||||
- [ ] Data loads successfully
|
||||
- [ ] dbt models run cleanly (`make dbt-run`)
|
||||
- [ ] Linting passes (`make lint`)
|
||||
- [ ] Tests pass (`make test`)
|
||||
|
||||
## Example: Toronto Dashboard
|
||||
|
||||
Reference implementation: `portfolio_app/pages/toronto/`
|
||||
|
||||
Key files:
|
||||
- `dashboard.py` - Main layout with 5 tabs
|
||||
- `tabs/overview.py` - Livability scores, scatter plots
|
||||
- `callbacks/map_callbacks.py` - Choropleth interactions
|
||||
- `toronto/models/dimensions.py` - Dimension tables
|
||||
- `toronto/models/facts.py` - Fact tables
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Figure Factories
|
||||
|
||||
```python
|
||||
# figures/choropleth.py
|
||||
def create_choropleth_figure(
|
||||
gdf: gpd.GeoDataFrame,
|
||||
value_column: str,
|
||||
title: str,
|
||||
**kwargs
|
||||
) -> go.Figure:
|
||||
...
|
||||
```
|
||||
|
||||
### Callbacks
|
||||
|
||||
```python
|
||||
# callbacks/map_callbacks.py
|
||||
@callback(
|
||||
Output("neighbourhood-details", "children"),
|
||||
Input("choropleth-map", "clickData"),
|
||||
)
|
||||
def update_details(click_data):
|
||||
...
|
||||
```
|
||||
|
||||
### Data Loading
|
||||
|
||||
```python
|
||||
# {dashboard_name}/loaders/load.py
|
||||
def load_data(session: Session) -> None:
|
||||
# Parse from source
|
||||
records = parse_source_data()
|
||||
|
||||
# Validate with Pydantic
|
||||
validated = [Schema(**r) for r in records]
|
||||
|
||||
# Load to database
|
||||
for record in validated:
|
||||
session.add(Model(**record.model_dump()))
|
||||
|
||||
session.commit()
|
||||
```
|
||||
232
docs/runbooks/deployment.md
Normal file
232
docs/runbooks/deployment.md
Normal file
@@ -0,0 +1,232 @@
|
||||
# Runbook: Deployment
|
||||
|
||||
This runbook covers deployment procedures for the Analytics Portfolio application.
|
||||
|
||||
## Environments
|
||||
|
||||
| Environment | Branch | Server | URL |
|
||||
|-------------|--------|--------|-----|
|
||||
| Development | `development` | Local | http://localhost:8050 |
|
||||
| Staging | `staging` | Homelab (hotserv) | Internal |
|
||||
| Production | `main` | Bandit Labs VPS | https://leodata.science |
|
||||
|
||||
## CI/CD Pipeline
|
||||
|
||||
### Automatic Deployment
|
||||
|
||||
Deployments are triggered automatically via Gitea Actions:
|
||||
|
||||
1. **Push to `staging`** → Deploys to staging server
|
||||
2. **Push to `main`** → Deploys to production server
|
||||
|
||||
### Workflow Files
|
||||
|
||||
- `.gitea/workflows/ci.yml` - Runs linting and tests on all branches
|
||||
- `.gitea/workflows/deploy-staging.yml` - Staging deployment
|
||||
- `.gitea/workflows/deploy-production.yml` - Production deployment
|
||||
|
||||
### Required Secrets
|
||||
|
||||
Configure these in Gitea repository settings:
|
||||
|
||||
| Secret | Description |
|
||||
|--------|-------------|
|
||||
| `STAGING_HOST` | Staging server hostname/IP |
|
||||
| `STAGING_USER` | SSH username for staging |
|
||||
| `STAGING_SSH_KEY` | Private key for staging SSH |
|
||||
| `PROD_HOST` | Production server hostname/IP |
|
||||
| `PROD_USER` | SSH username for production |
|
||||
| `PROD_SSH_KEY` | Private key for production SSH |
|
||||
|
||||
## Manual Deployment
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- SSH access to target server
|
||||
- Repository cloned at `~/apps/personal-portfolio`
|
||||
- Virtual environment created at `.venv`
|
||||
- Docker and Docker Compose installed
|
||||
- PostgreSQL container running
|
||||
|
||||
### Steps
|
||||
|
||||
```bash
|
||||
# 1. SSH to server
|
||||
ssh user@server
|
||||
|
||||
# 2. Navigate to app directory
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
# 3. Pull latest changes
|
||||
git fetch origin {branch}
|
||||
git reset --hard origin/{branch}
|
||||
|
||||
# 4. Activate virtual environment
|
||||
source .venv/bin/activate
|
||||
|
||||
# 5. Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# 6. Run database migrations (if any)
|
||||
# python -m alembic upgrade head
|
||||
|
||||
# 7. Run dbt models
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
# 8. Restart application
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
# 9. Verify health
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
## Rollback Procedure
|
||||
|
||||
### Quick Rollback
|
||||
|
||||
If deployment fails, rollback to previous commit:
|
||||
|
||||
```bash
|
||||
# 1. Find previous working commit
|
||||
git log --oneline -10
|
||||
|
||||
# 2. Reset to that commit
|
||||
git reset --hard {commit_hash}
|
||||
|
||||
# 3. Restart services
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
# 4. Verify
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
### Full Rollback (Database)
|
||||
|
||||
If database changes need to be reverted:
|
||||
|
||||
```bash
|
||||
# 1. Stop application
|
||||
docker compose down
|
||||
|
||||
# 2. Restore database backup
|
||||
pg_restore -h localhost -U portfolio -d portfolio backup.dump
|
||||
|
||||
# 3. Revert code
|
||||
git reset --hard {commit_hash}
|
||||
|
||||
# 4. Run dbt at that version
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
# 5. Restart
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
## Health Checks
|
||||
|
||||
### Application Health
|
||||
|
||||
```bash
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
Expected response:
|
||||
```json
|
||||
{"status": "healthy"}
|
||||
```
|
||||
|
||||
### Database Health
|
||||
|
||||
```bash
|
||||
docker compose exec postgres pg_isready -U portfolio
|
||||
```
|
||||
|
||||
### Container Status
|
||||
|
||||
```bash
|
||||
docker compose ps
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
### View Logs
|
||||
|
||||
```bash
|
||||
# All services
|
||||
make logs
|
||||
|
||||
# Specific service
|
||||
make logs SERVICE=postgres
|
||||
|
||||
# Or directly
|
||||
docker compose logs -f
|
||||
```
|
||||
|
||||
### Check Resource Usage
|
||||
|
||||
```bash
|
||||
docker stats
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Application Won't Start
|
||||
|
||||
1. Check container logs: `docker compose logs app`
|
||||
2. Verify environment variables: `cat .env`
|
||||
3. Check database connectivity: `docker compose exec postgres pg_isready`
|
||||
4. Verify port availability: `lsof -i :8050`
|
||||
|
||||
### Database Connection Errors
|
||||
|
||||
1. Check postgres container: `docker compose ps postgres`
|
||||
2. Verify DATABASE_URL in `.env`
|
||||
3. Check postgres logs: `docker compose logs postgres`
|
||||
4. Test connection: `docker compose exec postgres psql -U portfolio -c '\l'`
|
||||
|
||||
### dbt Failures
|
||||
|
||||
1. Check dbt logs: `cd dbt && dbt debug`
|
||||
2. Verify profiles.yml: `cat dbt/profiles.yml`
|
||||
3. Run with verbose output: `dbt run --debug`
|
||||
|
||||
### Out of Memory
|
||||
|
||||
1. Check memory usage: `free -h`
|
||||
2. Review container limits in docker-compose.yml
|
||||
3. Consider increasing swap or server resources
|
||||
|
||||
## Backup Procedures
|
||||
|
||||
### Database Backup
|
||||
|
||||
```bash
|
||||
# Create backup
|
||||
docker compose exec postgres pg_dump -U portfolio portfolio > backup_$(date +%Y%m%d).sql
|
||||
|
||||
# Compressed backup
|
||||
docker compose exec postgres pg_dump -U portfolio -Fc portfolio > backup_$(date +%Y%m%d).dump
|
||||
```
|
||||
|
||||
### Restore from Backup
|
||||
|
||||
```bash
|
||||
# From SQL file
|
||||
docker compose exec -T postgres psql -U portfolio portfolio < backup.sql
|
||||
|
||||
# From dump file
|
||||
docker compose exec -T postgres pg_restore -U portfolio -d portfolio < backup.dump
|
||||
```
|
||||
|
||||
## Deployment Checklist
|
||||
|
||||
Before deploying to production:
|
||||
|
||||
- [ ] All tests pass (`make test`)
|
||||
- [ ] Linting passes (`make lint`)
|
||||
- [ ] Staging deployment successful
|
||||
- [ ] Manual testing on staging complete
|
||||
- [ ] Database backup taken
|
||||
- [ ] Rollback plan confirmed
|
||||
- [ ] Team notified of deployment window
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Chart callbacks for supporting visualizations."""
|
||||
# mypy: disable-error-code="misc,no-untyped-def,arg-type"
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
from dash import Input, Output, callback
|
||||
|
||||
@@ -43,7 +44,24 @@ def update_overview_scatter(year: str) -> go.Figure:
|
||||
# Compute safety score (inverse of crime rate)
|
||||
if "total_crime_rate" in merged.columns:
|
||||
max_crime = merged["total_crime_rate"].max()
|
||||
merged["safety_score"] = 100 - (merged["total_crime_rate"] / max_crime * 100)
|
||||
if max_crime and max_crime > 0:
|
||||
merged["safety_score"] = 100 - (
|
||||
merged["total_crime_rate"] / max_crime * 100
|
||||
)
|
||||
else:
|
||||
merged["safety_score"] = 50 # Default if no crime data
|
||||
|
||||
# Fill NULL population with median or default value for sizing
|
||||
if "population" in merged.columns:
|
||||
median_pop = merged["population"].median()
|
||||
default_pop = median_pop if pd.notna(median_pop) else 10000
|
||||
merged["population"] = merged["population"].fillna(default_pop)
|
||||
|
||||
# Filter rows with required data for scatter plot
|
||||
merged = merged.dropna(subset=["median_household_income", "safety_score"])
|
||||
|
||||
if merged.empty:
|
||||
return _empty_chart("Insufficient data for scatter plot")
|
||||
|
||||
data = merged.to_dict("records")
|
||||
|
||||
@@ -76,12 +94,13 @@ def update_housing_trend(year: str, neighbourhood_id: int | None) -> go.Figure:
|
||||
return _empty_chart("No trend data available")
|
||||
|
||||
# Placeholder for trend data - would be historical
|
||||
base_rent = averages.get("avg_rent_2bed") or 2000
|
||||
data = [
|
||||
{"year": "2019", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.85},
|
||||
{"year": "2020", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.88},
|
||||
{"year": "2021", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.92},
|
||||
{"year": "2022", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.96},
|
||||
{"year": "2023", "avg_rent": averages.get("avg_rent_2bed", 2000)},
|
||||
{"year": "2019", "avg_rent": base_rent * 0.85},
|
||||
{"year": "2020", "avg_rent": base_rent * 0.88},
|
||||
{"year": "2021", "avg_rent": base_rent * 0.92},
|
||||
{"year": "2022", "avg_rent": base_rent * 0.96},
|
||||
{"year": "2023", "avg_rent": base_rent},
|
||||
]
|
||||
|
||||
fig = go.Figure()
|
||||
@@ -330,10 +349,11 @@ def update_amenities_radar(year: str, neighbourhood_id: int | None) -> go.Figure
|
||||
# Get city averages
|
||||
averages = get_city_averages(year_int)
|
||||
|
||||
amenity_score = averages.get("avg_amenity_score") or 50
|
||||
city_data = {
|
||||
"parks_per_1000": averages.get("avg_amenity_score", 50) / 100 * 10,
|
||||
"schools_per_1000": averages.get("avg_amenity_score", 50) / 100 * 5,
|
||||
"childcare_per_1000": averages.get("avg_amenity_score", 50) / 100 * 3,
|
||||
"parks_per_1000": amenity_score / 100 * 10,
|
||||
"schools_per_1000": amenity_score / 100 * 5,
|
||||
"childcare_per_1000": amenity_score / 100 * 3,
|
||||
"transit_access": 70,
|
||||
}
|
||||
|
||||
|
||||
@@ -3,7 +3,12 @@
|
||||
from .amenities import load_amenities, load_amenity_counts
|
||||
from .base import bulk_insert, get_session, upsert_by_key
|
||||
from .census import load_census_data
|
||||
from .cmhc import load_cmhc_record, load_cmhc_rentals
|
||||
from .cmhc import (
|
||||
ensure_toronto_cma_zone,
|
||||
load_cmhc_record,
|
||||
load_cmhc_rentals,
|
||||
load_statcan_cmhc_data,
|
||||
)
|
||||
from .cmhc_crosswalk import (
|
||||
build_cmhc_neighbourhood_crosswalk,
|
||||
disaggregate_zone_value,
|
||||
@@ -32,6 +37,8 @@ __all__ = [
|
||||
# Fact loaders
|
||||
"load_cmhc_rentals",
|
||||
"load_cmhc_record",
|
||||
"load_statcan_cmhc_data",
|
||||
"ensure_toronto_cma_zone",
|
||||
# Phase 3 loaders
|
||||
"load_census_data",
|
||||
"load_crime_data",
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
"""Loader for CMHC rental data into fact_rentals."""
|
||||
|
||||
import logging
|
||||
from datetime import date
|
||||
from typing import Any
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from portfolio_app.toronto.models import DimCMHCZone, DimTime, FactRentals
|
||||
@@ -8,6 +12,12 @@ from portfolio_app.toronto.schemas import CMHCAnnualSurvey, CMHCRentalRecord
|
||||
from .base import get_session, upsert_by_key
|
||||
from .dimensions import generate_date_key
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Toronto CMA zone code for CMA-level data
|
||||
TORONTO_CMA_ZONE_CODE = "TORCMA"
|
||||
TORONTO_CMA_ZONE_NAME = "Toronto CMA"
|
||||
|
||||
|
||||
def load_cmhc_rentals(
|
||||
survey: CMHCAnnualSurvey,
|
||||
@@ -135,3 +145,117 @@ def load_cmhc_record(
|
||||
return _load(session)
|
||||
with get_session() as sess:
|
||||
return _load(sess)
|
||||
|
||||
|
||||
def ensure_toronto_cma_zone(session: Session | None = None) -> int:
|
||||
"""Ensure Toronto CMA zone exists in dim_cmhc_zone.
|
||||
|
||||
Creates the zone if it doesn't exist.
|
||||
|
||||
Args:
|
||||
session: Optional existing session.
|
||||
|
||||
Returns:
|
||||
The zone_key for Toronto CMA.
|
||||
"""
|
||||
|
||||
def _ensure(sess: Session) -> int:
|
||||
zone = (
|
||||
sess.query(DimCMHCZone).filter_by(zone_code=TORONTO_CMA_ZONE_CODE).first()
|
||||
)
|
||||
if zone:
|
||||
return int(zone.zone_key)
|
||||
|
||||
# Create new zone
|
||||
new_zone = DimCMHCZone(
|
||||
zone_code=TORONTO_CMA_ZONE_CODE,
|
||||
zone_name=TORONTO_CMA_ZONE_NAME,
|
||||
geometry=None, # CMA-level doesn't need geometry
|
||||
)
|
||||
sess.add(new_zone)
|
||||
sess.flush()
|
||||
logger.info(f"Created Toronto CMA zone with zone_key={new_zone.zone_key}")
|
||||
return int(new_zone.zone_key)
|
||||
|
||||
if session:
|
||||
return _ensure(session)
|
||||
with get_session() as sess:
|
||||
result = _ensure(sess)
|
||||
sess.commit()
|
||||
return result
|
||||
|
||||
|
||||
def load_statcan_cmhc_data(
|
||||
records: list[Any], # List of CMHCRentalRecord from statcan_cmhc parser
|
||||
session: Session | None = None,
|
||||
) -> int:
|
||||
"""Load CMHC rental data from StatCan parser into fact_rentals.
|
||||
|
||||
This function handles CMA-level data from the StatCan API, which provides
|
||||
aggregate Toronto data rather than zone-level HMIP data.
|
||||
|
||||
Args:
|
||||
records: List of CMHCRentalRecord dataclass instances from statcan_cmhc parser.
|
||||
session: Optional existing session.
|
||||
|
||||
Returns:
|
||||
Number of records loaded.
|
||||
"""
|
||||
from portfolio_app.toronto.parsers.statcan_cmhc import (
|
||||
CMHCRentalRecord as StatCanRecord,
|
||||
)
|
||||
|
||||
def _load(sess: Session) -> int:
|
||||
# Ensure Toronto CMA zone exists
|
||||
zone_key = ensure_toronto_cma_zone(sess)
|
||||
|
||||
loaded = 0
|
||||
for record in records:
|
||||
if not isinstance(record, StatCanRecord):
|
||||
logger.warning(f"Skipping invalid record type: {type(record)}")
|
||||
continue
|
||||
|
||||
# Generate date key for this record's survey date
|
||||
survey_date = date(record.year, record.month, 1)
|
||||
date_key = generate_date_key(survey_date)
|
||||
|
||||
# Verify time dimension exists
|
||||
time_dim = sess.query(DimTime).filter_by(date_key=date_key).first()
|
||||
if not time_dim:
|
||||
logger.warning(
|
||||
f"Time dimension not found for {survey_date}, skipping record"
|
||||
)
|
||||
continue
|
||||
|
||||
# Create fact record
|
||||
fact = FactRentals(
|
||||
date_key=date_key,
|
||||
zone_key=zone_key,
|
||||
bedroom_type=record.bedroom_type,
|
||||
universe=record.universe,
|
||||
avg_rent=float(record.avg_rent) if record.avg_rent else None,
|
||||
median_rent=None, # StatCan doesn't provide median
|
||||
vacancy_rate=float(record.vacancy_rate)
|
||||
if record.vacancy_rate
|
||||
else None,
|
||||
availability_rate=None,
|
||||
turnover_rate=None,
|
||||
rent_change_pct=None,
|
||||
reliability_code=None,
|
||||
)
|
||||
|
||||
# Upsert
|
||||
inserted, updated = upsert_by_key(
|
||||
sess, FactRentals, [fact], ["date_key", "zone_key", "bedroom_type"]
|
||||
)
|
||||
loaded += inserted + updated
|
||||
|
||||
logger.info(f"Loaded {loaded} CMHC rental records from StatCan")
|
||||
return loaded
|
||||
|
||||
if session:
|
||||
return _load(session)
|
||||
with get_session() as sess:
|
||||
result = _load(sess)
|
||||
sess.commit()
|
||||
return result
|
||||
|
||||
383
portfolio_app/toronto/parsers/statcan_cmhc.py
Normal file
383
portfolio_app/toronto/parsers/statcan_cmhc.py
Normal file
@@ -0,0 +1,383 @@
|
||||
"""Parser for CMHC rental data via Statistics Canada API.
|
||||
|
||||
Downloads rental market data (average rent, vacancy rates, universe)
|
||||
from Statistics Canada's Web Data Service.
|
||||
|
||||
Data Sources:
|
||||
- Table 34-10-0127: Vacancy rates
|
||||
- Table 34-10-0129: Rental universe (total units)
|
||||
- Table 34-10-0133: Average rent by bedroom type
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
import zipfile
|
||||
from dataclasses import dataclass
|
||||
from decimal import Decimal
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
import pandas as pd
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# StatCan Web Data Service endpoints
|
||||
STATCAN_API_BASE = "https://www150.statcan.gc.ca/t1/wds/rest"
|
||||
STATCAN_DOWNLOAD_BASE = "https://www150.statcan.gc.ca/n1/tbl/csv"
|
||||
|
||||
# CMHC table IDs
|
||||
CMHC_TABLES = {
|
||||
"vacancy": "34100127",
|
||||
"universe": "34100129",
|
||||
"rent": "34100133",
|
||||
}
|
||||
|
||||
# Toronto CMA identifier in StatCan data
|
||||
TORONTO_DGUID = "2011S0503535"
|
||||
TORONTO_GEO_NAME = "Toronto, Ontario"
|
||||
|
||||
|
||||
@dataclass
|
||||
class CMHCRentalRecord:
|
||||
"""Rental market record for database loading."""
|
||||
|
||||
year: int
|
||||
month: int # CMHC surveys in October, so month=10
|
||||
zone_name: str
|
||||
bedroom_type: str
|
||||
avg_rent: Decimal | None
|
||||
vacancy_rate: Decimal | None
|
||||
universe: int | None
|
||||
|
||||
|
||||
class StatCanCMHCParser:
|
||||
"""Parser for CMHC rental data from Statistics Canada.
|
||||
|
||||
Downloads and processes rental market survey data including:
|
||||
- Average rents by bedroom type
|
||||
- Vacancy rates
|
||||
- Rental universe (total units)
|
||||
|
||||
Data is available from 1987 to present, updated annually in January.
|
||||
"""
|
||||
|
||||
BEDROOM_TYPE_MAP = {
|
||||
"Bachelor units": "bachelor",
|
||||
"One bedroom units": "1bed",
|
||||
"Two bedroom units": "2bed",
|
||||
"Three bedroom units": "3bed",
|
||||
"Total": "total",
|
||||
}
|
||||
|
||||
STRUCTURE_FILTER = "Apartment structures of six units and over"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cache_dir: Path | None = None,
|
||||
timeout: float = 60.0,
|
||||
) -> None:
|
||||
"""Initialize parser.
|
||||
|
||||
Args:
|
||||
cache_dir: Optional directory for caching downloaded files.
|
||||
timeout: HTTP request timeout in seconds.
|
||||
"""
|
||||
self._cache_dir = cache_dir
|
||||
self._timeout = timeout
|
||||
self._client: httpx.Client | None = None
|
||||
|
||||
@property
|
||||
def client(self) -> httpx.Client:
|
||||
"""Lazy-initialize HTTP client."""
|
||||
if self._client is None:
|
||||
self._client = httpx.Client(
|
||||
timeout=self._timeout,
|
||||
follow_redirects=True,
|
||||
)
|
||||
return self._client
|
||||
|
||||
def close(self) -> None:
|
||||
"""Close HTTP client."""
|
||||
if self._client is not None:
|
||||
self._client.close()
|
||||
self._client = None
|
||||
|
||||
def __enter__(self) -> "StatCanCMHCParser":
|
||||
return self
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
self.close()
|
||||
|
||||
def _get_download_url(self, table_id: str) -> str:
|
||||
"""Get CSV download URL for a StatCan table.
|
||||
|
||||
Args:
|
||||
table_id: StatCan table ID (e.g., "34100133").
|
||||
|
||||
Returns:
|
||||
Direct download URL for the CSV zip file.
|
||||
"""
|
||||
api_url = f"{STATCAN_API_BASE}/getFullTableDownloadCSV/{table_id}/en"
|
||||
response = self.client.get(api_url)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
if data.get("status") != "SUCCESS":
|
||||
raise ValueError(f"StatCan API error: {data}")
|
||||
|
||||
return str(data["object"])
|
||||
|
||||
def _download_table(self, table_id: str) -> pd.DataFrame:
|
||||
"""Download and extract a StatCan table as DataFrame.
|
||||
|
||||
Args:
|
||||
table_id: StatCan table ID.
|
||||
|
||||
Returns:
|
||||
DataFrame with table data.
|
||||
"""
|
||||
# Check cache first
|
||||
if self._cache_dir:
|
||||
cache_file = self._cache_dir / f"{table_id}.csv"
|
||||
if cache_file.exists():
|
||||
logger.debug(f"Loading {table_id} from cache")
|
||||
return pd.read_csv(cache_file)
|
||||
|
||||
# Get download URL and fetch
|
||||
download_url = self._get_download_url(table_id)
|
||||
logger.info(f"Downloading StatCan table {table_id}...")
|
||||
|
||||
response = self.client.get(download_url)
|
||||
response.raise_for_status()
|
||||
|
||||
# Extract CSV from zip
|
||||
with zipfile.ZipFile(io.BytesIO(response.content)) as zf:
|
||||
csv_name = f"{table_id}.csv"
|
||||
with zf.open(csv_name) as f:
|
||||
df = pd.read_csv(f)
|
||||
|
||||
# Cache if directory specified
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
df.to_csv(self._cache_dir / f"{table_id}.csv", index=False)
|
||||
|
||||
logger.info(f"Downloaded {len(df)} records from table {table_id}")
|
||||
return df
|
||||
|
||||
def _filter_toronto(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Filter DataFrame to Toronto CMA only.
|
||||
|
||||
Args:
|
||||
df: Full StatCan DataFrame.
|
||||
|
||||
Returns:
|
||||
DataFrame filtered to Toronto.
|
||||
"""
|
||||
# Try DGUID first, then GEO name
|
||||
if "DGUID" in df.columns:
|
||||
toronto_df = df[df["DGUID"] == TORONTO_DGUID]
|
||||
if len(toronto_df) > 0:
|
||||
return toronto_df
|
||||
|
||||
if "GEO" in df.columns:
|
||||
return df[df["GEO"] == TORONTO_GEO_NAME]
|
||||
|
||||
raise ValueError("Could not identify Toronto data in DataFrame")
|
||||
|
||||
def get_vacancy_rates(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[int, Decimal]:
|
||||
"""Fetch Toronto vacancy rates by year.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping year to vacancy rate.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["vacancy"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter years if specified
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
# Extract year -> rate mapping
|
||||
rates = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
value = row.get("VALUE")
|
||||
if pd.notna(value):
|
||||
rates[year] = Decimal(str(value))
|
||||
|
||||
logger.info(f"Fetched vacancy rates for {len(rates)} years")
|
||||
return rates
|
||||
|
||||
def get_rental_universe(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[tuple[int, str], int]:
|
||||
"""Fetch Toronto rental universe (total units) by year and bedroom type.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping (year, bedroom_type) to unit count.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["universe"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter to standard apartment structures
|
||||
if "Type of structure" in df.columns:
|
||||
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
|
||||
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
universe = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
bedroom_raw = row.get("Type of unit", "Total")
|
||||
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
|
||||
value = row.get("VALUE")
|
||||
|
||||
if pd.notna(value) and value is not None:
|
||||
universe[(year, bedroom)] = int(str(value))
|
||||
|
||||
logger.info(
|
||||
f"Fetched rental universe for {len(universe)} year/bedroom combinations"
|
||||
)
|
||||
return universe
|
||||
|
||||
def get_average_rents(
|
||||
self,
|
||||
years: list[int] | None = None,
|
||||
) -> dict[tuple[int, str], Decimal]:
|
||||
"""Fetch Toronto average rents by year and bedroom type.
|
||||
|
||||
Args:
|
||||
years: Optional list of years to filter.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping (year, bedroom_type) to average rent.
|
||||
"""
|
||||
df = self._download_table(CMHC_TABLES["rent"])
|
||||
df = self._filter_toronto(df)
|
||||
|
||||
# Filter to standard apartment structures (most reliable data)
|
||||
if "Type of structure" in df.columns:
|
||||
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
|
||||
|
||||
if years:
|
||||
df = df[df["REF_DATE"].isin(years)]
|
||||
|
||||
rents = {}
|
||||
for _, row in df.iterrows():
|
||||
year = int(row["REF_DATE"])
|
||||
bedroom_raw = row.get("Type of unit", "Total")
|
||||
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
|
||||
value = row.get("VALUE")
|
||||
|
||||
if pd.notna(value) and str(value) not in ("F", ".."):
|
||||
with contextlib.suppress(Exception):
|
||||
rents[(year, bedroom)] = Decimal(str(value))
|
||||
|
||||
logger.info(f"Fetched average rents for {len(rents)} year/bedroom combinations")
|
||||
return rents
|
||||
|
||||
def get_all_rental_data(
|
||||
self,
|
||||
start_year: int = 2014,
|
||||
end_year: int | None = None,
|
||||
) -> list[CMHCRentalRecord]:
|
||||
"""Fetch all Toronto rental data and combine into records.
|
||||
|
||||
Args:
|
||||
start_year: First year to include.
|
||||
end_year: Last year to include (defaults to current year + 1).
|
||||
|
||||
Returns:
|
||||
List of CMHCRentalRecord objects ready for database loading.
|
||||
"""
|
||||
import datetime
|
||||
|
||||
if end_year is None:
|
||||
end_year = datetime.date.today().year + 1
|
||||
|
||||
years = list(range(start_year, end_year + 1))
|
||||
|
||||
logger.info(
|
||||
f"Fetching CMHC rental data for Toronto ({start_year}-{end_year})..."
|
||||
)
|
||||
|
||||
# Fetch all data types
|
||||
vacancy_rates = self.get_vacancy_rates(years)
|
||||
rents = self.get_average_rents(years)
|
||||
universe = self.get_rental_universe(years)
|
||||
|
||||
# Combine into records
|
||||
records = []
|
||||
bedroom_types = ["bachelor", "1bed", "2bed", "3bed"]
|
||||
|
||||
for year in years:
|
||||
vacancy = vacancy_rates.get(year)
|
||||
|
||||
for bedroom in bedroom_types:
|
||||
avg_rent = rents.get((year, bedroom))
|
||||
units = universe.get((year, bedroom))
|
||||
|
||||
# Skip if no rent data for this year/bedroom
|
||||
if avg_rent is None:
|
||||
continue
|
||||
|
||||
records.append(
|
||||
CMHCRentalRecord(
|
||||
year=year,
|
||||
month=10, # CMHC surveys in October
|
||||
zone_name="Toronto CMA",
|
||||
bedroom_type=bedroom,
|
||||
avg_rent=avg_rent,
|
||||
vacancy_rate=vacancy,
|
||||
universe=units,
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(f"Created {len(records)} CMHC rental records")
|
||||
return records
|
||||
|
||||
|
||||
def fetch_toronto_rental_data(
|
||||
start_year: int = 2014,
|
||||
end_year: int | None = None,
|
||||
cache_dir: Path | None = None,
|
||||
) -> list[CMHCRentalRecord]:
|
||||
"""Convenience function to fetch Toronto rental data.
|
||||
|
||||
Args:
|
||||
start_year: First year to include.
|
||||
end_year: Last year to include.
|
||||
cache_dir: Optional cache directory.
|
||||
|
||||
Returns:
|
||||
List of CMHCRentalRecord objects.
|
||||
"""
|
||||
with StatCanCMHCParser(cache_dir=cache_dir) as parser:
|
||||
return parser.get_all_rental_data(start_year, end_year)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Test the parser
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
records = fetch_toronto_rental_data(start_year=2020)
|
||||
|
||||
print(f"\nFetched {len(records)} records")
|
||||
print("\nSample records:")
|
||||
for r in records[:10]:
|
||||
print(
|
||||
f" {r.year} {r.bedroom_type}: ${r.avg_rent} rent, {r.vacancy_rate}% vacancy"
|
||||
)
|
||||
@@ -6,6 +6,7 @@ from the City of Toronto's Open Data Portal.
|
||||
API Documentation: https://open.toronto.ca/dataset/
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import json
|
||||
import logging
|
||||
from decimal import Decimal
|
||||
@@ -193,6 +194,9 @@ class TorontoOpenDataParser:
|
||||
def _fetch_geojson(self, package_id: str) -> dict[str, Any]:
|
||||
"""Fetch GeoJSON data from a package.
|
||||
|
||||
Handles both pure GeoJSON responses and CSV responses with embedded
|
||||
geometry columns (common in Toronto Open Data).
|
||||
|
||||
Args:
|
||||
package_id: The package/dataset ID.
|
||||
|
||||
@@ -212,16 +216,65 @@ class TorontoOpenDataParser:
|
||||
|
||||
response = self.client.get(url)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
# Cache the response
|
||||
# Try to parse as JSON first
|
||||
try:
|
||||
data = response.json()
|
||||
# If it's already a valid GeoJSON FeatureCollection, return it
|
||||
if isinstance(data, dict) and data.get("type") == "FeatureCollection":
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file = self._cache_dir / f"{package_id}.geojson"
|
||||
with open(cache_file, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f)
|
||||
|
||||
return dict(data)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If JSON parsing failed, it's likely CSV with embedded geometry
|
||||
# Parse CSV and convert to GeoJSON FeatureCollection
|
||||
logger.info("Response is CSV format, converting to GeoJSON...")
|
||||
import csv
|
||||
import io
|
||||
|
||||
# Increase field size limit for large geometry columns
|
||||
csv.field_size_limit(10 * 1024 * 1024) # 10 MB
|
||||
|
||||
csv_text = response.text
|
||||
reader = csv.DictReader(io.StringIO(csv_text))
|
||||
|
||||
features = []
|
||||
for row in reader:
|
||||
# Extract geometry from the 'geometry' column if present
|
||||
geometry = None
|
||||
if "geometry" in row and row["geometry"]:
|
||||
with contextlib.suppress(json.JSONDecodeError):
|
||||
geometry = json.loads(row["geometry"])
|
||||
|
||||
# Build properties from all other columns
|
||||
properties = {k: v for k, v in row.items() if k != "geometry"}
|
||||
|
||||
features.append(
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": geometry,
|
||||
"properties": properties,
|
||||
}
|
||||
)
|
||||
|
||||
geojson_data: dict[str, Any] = {
|
||||
"type": "FeatureCollection",
|
||||
"features": features,
|
||||
}
|
||||
|
||||
# Cache the converted response
|
||||
if self._cache_dir:
|
||||
self._cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file = self._cache_dir / f"{package_id}.geojson"
|
||||
with open(cache_file, "w", encoding="utf-8") as f:
|
||||
json.dump(geojson_data, f)
|
||||
|
||||
return geojson_data
|
||||
|
||||
def _fetch_csv_as_json(self, package_id: str) -> list[dict[str, Any]]:
|
||||
"""Fetch CSV data as JSON records via CKAN datastore.
|
||||
@@ -282,29 +335,32 @@ class TorontoOpenDataParser:
|
||||
props = feature.get("properties", {})
|
||||
geometry = feature.get("geometry")
|
||||
|
||||
# Extract area_id from various possible property names
|
||||
area_id = props.get("AREA_ID") or props.get("area_id")
|
||||
if area_id is None:
|
||||
# Try AREA_SHORT_CODE as fallback
|
||||
short_code = props.get("AREA_SHORT_CODE", "")
|
||||
# Use AREA_SHORT_CODE as the primary ID (1-158 range)
|
||||
# AREA_ID is a large internal identifier not useful for our schema
|
||||
short_code = props.get("AREA_SHORT_CODE") or props.get(
|
||||
"area_short_code", ""
|
||||
)
|
||||
if short_code:
|
||||
# Extract numeric part
|
||||
area_id = int("".join(c for c in short_code if c.isdigit()) or "0")
|
||||
area_id = int("".join(c for c in str(short_code) if c.isdigit()) or "0")
|
||||
else:
|
||||
# Fallback to _id (row number) if AREA_SHORT_CODE not available
|
||||
area_id = int(props.get("_id", 0))
|
||||
|
||||
if area_id == 0:
|
||||
logger.warning(f"Skipping neighbourhood with no valid ID: {props}")
|
||||
continue
|
||||
|
||||
area_name = (
|
||||
props.get("AREA_NAME")
|
||||
or props.get("area_name")
|
||||
or f"Neighbourhood {area_id}"
|
||||
)
|
||||
area_short_code = props.get("AREA_SHORT_CODE") or props.get(
|
||||
"area_short_code"
|
||||
)
|
||||
|
||||
records.append(
|
||||
NeighbourhoodRecord(
|
||||
area_id=int(area_id),
|
||||
area_id=area_id,
|
||||
area_name=str(area_name),
|
||||
area_short_code=area_short_code,
|
||||
area_short_code=str(short_code) if short_code else None,
|
||||
geometry=geometry,
|
||||
)
|
||||
)
|
||||
@@ -314,17 +370,17 @@ class TorontoOpenDataParser:
|
||||
|
||||
# Mapping of indicator names to CensusRecord fields
|
||||
# Keys are partial matches (case-insensitive) found in the "Characteristic" column
|
||||
# Order matters - first match wins, so more specific patterns come first
|
||||
# Note: owner/renter counts are raw numbers, not percentages - calculated in dbt
|
||||
CENSUS_INDICATOR_MAPPING: dict[str, str] = {
|
||||
"population, 2021": "population",
|
||||
"population, 2016": "population",
|
||||
"population density per square kilometre": "population_density",
|
||||
"median total income of household": "median_household_income",
|
||||
"average total income of household": "average_household_income",
|
||||
"median total income of households in": "median_household_income",
|
||||
"average total income of households in": "average_household_income",
|
||||
"unemployment rate": "unemployment_rate",
|
||||
"bachelor's degree or higher": "pct_bachelors_or_higher",
|
||||
"owner": "pct_owner_occupied",
|
||||
"renter": "pct_renter_occupied",
|
||||
"median age": "median_age",
|
||||
"average age": "median_age",
|
||||
"average value of dwellings": "average_dwelling_value",
|
||||
}
|
||||
|
||||
@@ -358,17 +414,31 @@ class TorontoOpenDataParser:
|
||||
logger.info(f"Fetched {len(raw_records)} census profile rows")
|
||||
|
||||
# Find the characteristic/indicator column name
|
||||
# Prioritize "Characteristic" over "Category" since both may exist
|
||||
sample_row = raw_records[0]
|
||||
char_col = None
|
||||
|
||||
# First try exact match for Characteristic
|
||||
if "Characteristic" in sample_row:
|
||||
char_col = "Characteristic"
|
||||
else:
|
||||
# Fall back to pattern matching
|
||||
for col in sample_row:
|
||||
col_lower = col.lower()
|
||||
if "characteristic" in col_lower or "category" in col_lower:
|
||||
if "characteristic" in col_lower:
|
||||
char_col = col
|
||||
break
|
||||
|
||||
# Last resort: try Category
|
||||
if not char_col:
|
||||
for col in sample_row:
|
||||
if "category" in col.lower():
|
||||
char_col = col
|
||||
break
|
||||
|
||||
if not char_col:
|
||||
# Try common column names
|
||||
for candidate in ["Characteristic", "Category", "Topic", "_id"]:
|
||||
# Try other common column names
|
||||
for candidate in ["Topic", "_id"]:
|
||||
if candidate in sample_row:
|
||||
char_col = candidate
|
||||
break
|
||||
|
||||
@@ -37,7 +37,7 @@ def get_neighbourhoods_geojson(year: int = 2021) -> dict[str, Any]:
|
||||
ST_AsGeoJSON(geometry)::json as geom,
|
||||
population,
|
||||
livability_score
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
AND geometry IS NOT NULL
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Service layer for querying neighbourhood data from dbt marts."""
|
||||
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from typing import Any
|
||||
|
||||
@@ -8,6 +9,8 @@ from sqlalchemy import text
|
||||
|
||||
from portfolio_app.toronto.models import get_engine
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFrame:
|
||||
"""Execute SQL query and return DataFrame.
|
||||
@@ -23,8 +26,10 @@ def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFra
|
||||
engine = get_engine()
|
||||
with engine.connect() as conn:
|
||||
return pd.read_sql(text(sql), conn, params=params)
|
||||
except Exception:
|
||||
# Return empty DataFrame on connection or query error
|
||||
except Exception as e:
|
||||
logger.error(f"Query failed: {e}")
|
||||
logger.debug(f"Failed SQL: {sql}")
|
||||
logger.debug(f"Params: {params}")
|
||||
return pd.DataFrame()
|
||||
|
||||
|
||||
@@ -56,7 +61,7 @@ def get_overview_data(year: int = 2021) -> pd.DataFrame:
|
||||
rent_to_income_pct,
|
||||
avg_rent_2bed,
|
||||
total_amenities_per_1000
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
ORDER BY livability_score DESC NULLS LAST
|
||||
"""
|
||||
@@ -95,7 +100,7 @@ def get_housing_data(year: int = 2021) -> pd.DataFrame:
|
||||
affordability_index,
|
||||
rent_yoy_change_pct,
|
||||
income_quintile
|
||||
FROM mart_neighbourhood_housing
|
||||
FROM public_marts.mart_neighbourhood_housing
|
||||
WHERE year = :year
|
||||
ORDER BY affordability_index ASC NULLS LAST
|
||||
"""
|
||||
@@ -112,26 +117,22 @@ def get_safety_data(year: int = 2021) -> pd.DataFrame:
|
||||
|
||||
Returns:
|
||||
DataFrame with columns: neighbourhood_id, neighbourhood_name,
|
||||
total_crime_rate, violent_crime_rate, property_crime_rate, etc.
|
||||
total_crime_rate, violent_crimes, property_crimes, etc.
|
||||
"""
|
||||
sql = """
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
year,
|
||||
total_crimes,
|
||||
total_incidents as total_crimes,
|
||||
crime_rate_per_100k as total_crime_rate,
|
||||
violent_crimes,
|
||||
violent_crime_rate,
|
||||
property_crimes,
|
||||
property_crime_rate,
|
||||
theft_crimes,
|
||||
theft_rate,
|
||||
crime_yoy_change_pct,
|
||||
crime_trend
|
||||
FROM mart_neighbourhood_safety
|
||||
assault_count + robbery_count + homicide_count as violent_crimes,
|
||||
break_enter_count + auto_theft_count as property_crimes,
|
||||
theft_over_count as theft_crimes,
|
||||
crime_yoy_change_pct
|
||||
FROM public_marts.mart_neighbourhood_safety
|
||||
WHERE year = :year
|
||||
ORDER BY total_crime_rate ASC NULLS LAST
|
||||
ORDER BY crime_rate_per_100k ASC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -152,22 +153,22 @@ def get_demographics_data(year: int = 2021) -> pd.DataFrame:
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
census_year as year,
|
||||
year,
|
||||
population,
|
||||
population_density,
|
||||
population_change_pct,
|
||||
median_household_income,
|
||||
average_household_income,
|
||||
income_quintile,
|
||||
income_index,
|
||||
median_age,
|
||||
pct_under_18,
|
||||
pct_18_to_64,
|
||||
pct_65_plus,
|
||||
pct_bachelors_or_higher,
|
||||
age_index,
|
||||
pct_owner_occupied,
|
||||
pct_renter_occupied,
|
||||
education_bachelors_pct as pct_bachelors_or_higher,
|
||||
unemployment_rate,
|
||||
diversity_index
|
||||
FROM mart_neighbourhood_demographics
|
||||
WHERE census_year = :year
|
||||
tenure_diversity_index as diversity_index
|
||||
FROM public_marts.mart_neighbourhood_demographics
|
||||
WHERE year = :year
|
||||
ORDER BY population DESC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
@@ -183,26 +184,26 @@ def get_amenities_data(year: int = 2021) -> pd.DataFrame:
|
||||
|
||||
Returns:
|
||||
DataFrame with columns: neighbourhood_id, neighbourhood_name,
|
||||
amenity_score, parks_per_capita, schools_per_capita, transit_score, etc.
|
||||
amenity_score, parks_per_1000, schools_per_1000, etc.
|
||||
"""
|
||||
sql = """
|
||||
SELECT
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
year,
|
||||
park_count,
|
||||
parks_count as park_count,
|
||||
parks_per_1000,
|
||||
school_count,
|
||||
schools_count as school_count,
|
||||
schools_per_1000,
|
||||
childcare_count,
|
||||
childcare_per_1000,
|
||||
transit_count as childcare_count,
|
||||
transit_per_1000 as childcare_per_1000,
|
||||
total_amenities,
|
||||
total_amenities_per_1000,
|
||||
amenity_score,
|
||||
amenity_rank
|
||||
FROM mart_neighbourhood_amenities
|
||||
amenity_index as amenity_score,
|
||||
amenity_tier as amenity_rank
|
||||
FROM public_marts.mart_neighbourhood_amenities
|
||||
WHERE year = :year
|
||||
ORDER BY amenity_score DESC NULLS LAST
|
||||
ORDER BY amenity_index DESC NULLS LAST
|
||||
"""
|
||||
return _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -249,17 +250,17 @@ def get_neighbourhood_details(
|
||||
a.park_count,
|
||||
a.school_count,
|
||||
a.total_amenities
|
||||
FROM mart_neighbourhood_overview o
|
||||
LEFT JOIN mart_neighbourhood_safety s
|
||||
FROM public_marts.mart_neighbourhood_overview o
|
||||
LEFT JOIN public_marts.mart_neighbourhood_safety s
|
||||
ON o.neighbourhood_id = s.neighbourhood_id
|
||||
AND o.year = s.year
|
||||
LEFT JOIN mart_neighbourhood_housing h
|
||||
LEFT JOIN public_marts.mart_neighbourhood_housing h
|
||||
ON o.neighbourhood_id = h.neighbourhood_id
|
||||
AND o.year = h.year
|
||||
LEFT JOIN mart_neighbourhood_demographics d
|
||||
LEFT JOIN public_marts.mart_neighbourhood_demographics d
|
||||
ON o.neighbourhood_id = d.neighbourhood_id
|
||||
AND o.year = d.census_year
|
||||
LEFT JOIN mart_neighbourhood_amenities a
|
||||
LEFT JOIN public_marts.mart_neighbourhood_amenities a
|
||||
ON o.neighbourhood_id = a.neighbourhood_id
|
||||
AND o.year = a.year
|
||||
WHERE o.neighbourhood_id = :neighbourhood_id
|
||||
@@ -288,7 +289,7 @@ def get_neighbourhood_list(year: int = 2021) -> list[dict[str, Any]]:
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
population
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
ORDER BY neighbourhood_name
|
||||
"""
|
||||
@@ -317,19 +318,19 @@ def get_rankings(
|
||||
"""
|
||||
# Map metrics to their source tables
|
||||
table_map = {
|
||||
"livability_score": "mart_neighbourhood_overview",
|
||||
"safety_score": "mart_neighbourhood_overview",
|
||||
"affordability_score": "mart_neighbourhood_overview",
|
||||
"amenity_score": "mart_neighbourhood_overview",
|
||||
"crime_rate_per_100k": "mart_neighbourhood_safety",
|
||||
"total_crime_rate": "mart_neighbourhood_safety",
|
||||
"avg_rent_2bed": "mart_neighbourhood_housing",
|
||||
"affordability_index": "mart_neighbourhood_housing",
|
||||
"population": "mart_neighbourhood_demographics",
|
||||
"median_household_income": "mart_neighbourhood_demographics",
|
||||
"livability_score": "public_marts.mart_neighbourhood_overview",
|
||||
"safety_score": "public_marts.mart_neighbourhood_overview",
|
||||
"affordability_score": "public_marts.mart_neighbourhood_overview",
|
||||
"amenity_score": "public_marts.mart_neighbourhood_overview",
|
||||
"crime_rate_per_100k": "public_marts.mart_neighbourhood_safety",
|
||||
"total_crime_rate": "public_marts.mart_neighbourhood_safety",
|
||||
"avg_rent_2bed": "public_marts.mart_neighbourhood_housing",
|
||||
"affordability_index": "public_marts.mart_neighbourhood_housing",
|
||||
"population": "public_marts.mart_neighbourhood_demographics",
|
||||
"median_household_income": "public_marts.mart_neighbourhood_demographics",
|
||||
}
|
||||
|
||||
table = table_map.get(metric, "mart_neighbourhood_overview")
|
||||
table = table_map.get(metric, "public_marts.mart_neighbourhood_overview")
|
||||
year_col = "census_year" if "demographics" in table else "year"
|
||||
|
||||
order = "ASC" if ascending else "DESC"
|
||||
@@ -375,7 +376,7 @@ def get_city_averages(year: int = 2021) -> dict[str, Any]:
|
||||
AVG(crime_rate_per_100k) as avg_crime_rate,
|
||||
AVG(avg_rent_2bed) as avg_rent_2bed,
|
||||
AVG(rent_to_income_pct) as avg_rent_to_income
|
||||
FROM mart_neighbourhood_overview
|
||||
FROM public_marts.mart_neighbourhood_overview
|
||||
WHERE year = :year
|
||||
"""
|
||||
df = _execute_query(sql, {"year": year})
|
||||
|
||||
@@ -38,12 +38,16 @@ from portfolio_app.toronto.loaders import ( # noqa: E402
|
||||
load_census_data,
|
||||
load_crime_data,
|
||||
load_neighbourhoods,
|
||||
load_statcan_cmhc_data,
|
||||
load_time_dimension,
|
||||
)
|
||||
from portfolio_app.toronto.parsers import ( # noqa: E402
|
||||
TorontoOpenDataParser,
|
||||
TorontoPoliceParser,
|
||||
)
|
||||
from portfolio_app.toronto.parsers.statcan_cmhc import ( # noqa: E402
|
||||
fetch_toronto_rental_data,
|
||||
)
|
||||
from portfolio_app.toronto.schemas import Neighbourhood # noqa: E402
|
||||
|
||||
# Configure logging
|
||||
@@ -91,6 +95,9 @@ class DataPipeline:
|
||||
# 5. Load amenities
|
||||
self._load_amenities(session)
|
||||
|
||||
# 6. Load CMHC rental data from StatCan
|
||||
self._load_rentals(session)
|
||||
|
||||
session.commit()
|
||||
logger.info("All data committed to database")
|
||||
|
||||
@@ -241,6 +248,32 @@ class DataPipeline:
|
||||
|
||||
self.stats["amenities"] = total_count
|
||||
|
||||
def _load_rentals(self, session: Any) -> None:
|
||||
"""Fetch and load CMHC rental data from StatCan."""
|
||||
logger.info("Fetching CMHC rental data from Statistics Canada...")
|
||||
|
||||
if self.dry_run:
|
||||
logger.info(" [DRY RUN] Would fetch and load CMHC rental data")
|
||||
return
|
||||
|
||||
try:
|
||||
# Fetch rental data (2014-present)
|
||||
rental_records = fetch_toronto_rental_data(start_year=2014)
|
||||
|
||||
if not rental_records:
|
||||
logger.warning(" No rental records fetched")
|
||||
return
|
||||
|
||||
count = load_statcan_cmhc_data(rental_records, session)
|
||||
self.stats["rentals"] = count
|
||||
logger.info(f" Loaded {count} CMHC rental records")
|
||||
except Exception as e:
|
||||
logger.warning(f" Failed to load CMHC rental data: {e}")
|
||||
if self.verbose:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
def run_dbt(self) -> bool:
|
||||
"""Run dbt to transform data.
|
||||
|
||||
|
||||
@@ -25,8 +25,10 @@ def main() -> int:
|
||||
engine = get_engine()
|
||||
|
||||
# Test connection
|
||||
from sqlalchemy import text
|
||||
|
||||
with engine.connect() as conn:
|
||||
result = conn.execute("SELECT 1")
|
||||
result = conn.execute(text("SELECT 1"))
|
||||
result.fetchone()
|
||||
print("Database connection successful")
|
||||
|
||||
|
||||
72
scripts/etl/toronto.sh
Executable file
72
scripts/etl/toronto.sh
Executable file
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env bash
|
||||
# scripts/etl/toronto.sh - Run Toronto data pipeline
|
||||
#
|
||||
# Usage:
|
||||
# ./scripts/etl/toronto.sh --full # Complete reload of all data
|
||||
# ./scripts/etl/toronto.sh --incremental # Only new data since last run
|
||||
# ./scripts/etl/toronto.sh # Default: incremental
|
||||
#
|
||||
# Logs are written to .dev/logs/etl/
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
PROJECT_ROOT="$(cd "$SCRIPT_DIR/../.." && pwd)"
|
||||
LOG_DIR="$PROJECT_ROOT/.dev/logs/etl"
|
||||
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
|
||||
LOG_FILE="$LOG_DIR/toronto_${TIMESTAMP}.log"
|
||||
|
||||
MODE="${1:---incremental}"
|
||||
|
||||
mkdir -p "$LOG_DIR"
|
||||
|
||||
log() {
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$LOG_FILE"
|
||||
}
|
||||
|
||||
log "Starting Toronto ETL pipeline (mode: $MODE)"
|
||||
log "Log file: $LOG_FILE"
|
||||
|
||||
cd "$PROJECT_ROOT"
|
||||
|
||||
# Activate virtual environment if it exists
|
||||
if [ -d ".venv" ]; then
|
||||
source .venv/bin/activate
|
||||
log "Activated virtual environment"
|
||||
fi
|
||||
|
||||
case "$MODE" in
|
||||
--full)
|
||||
log "Running FULL data reload..."
|
||||
|
||||
log "Step 1/4: Parsing neighbourhood data..."
|
||||
python -m portfolio_app.toronto.parsers.neighbourhoods 2>&1 | tee -a "$LOG_FILE"
|
||||
|
||||
log "Step 2/4: Parsing census data..."
|
||||
python -m portfolio_app.toronto.parsers.census 2>&1 | tee -a "$LOG_FILE"
|
||||
|
||||
log "Step 3/4: Parsing crime data..."
|
||||
python -m portfolio_app.toronto.parsers.crime 2>&1 | tee -a "$LOG_FILE"
|
||||
|
||||
log "Step 4/4: Running dbt transformations..."
|
||||
cd dbt && dbt run --full-refresh --profiles-dir . 2>&1 | tee -a "$LOG_FILE" && cd ..
|
||||
;;
|
||||
|
||||
--incremental)
|
||||
log "Running INCREMENTAL update..."
|
||||
|
||||
log "Step 1/2: Checking for new data..."
|
||||
# Add incremental logic here when implemented
|
||||
|
||||
log "Step 2/2: Running dbt transformations..."
|
||||
cd dbt && dbt run --profiles-dir . 2>&1 | tee -a "$LOG_FILE" && cd ..
|
||||
;;
|
||||
|
||||
*)
|
||||
log "ERROR: Unknown mode '$MODE'. Use --full or --incremental"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
log "Toronto ETL pipeline completed successfully"
|
||||
log "Full log available at: $LOG_FILE"
|
||||
20
scripts/logs.sh
Executable file
20
scripts/logs.sh
Executable file
@@ -0,0 +1,20 @@
|
||||
#!/usr/bin/env bash
|
||||
# scripts/logs.sh - Follow docker compose logs
|
||||
#
|
||||
# Usage:
|
||||
# ./scripts/logs.sh # All services
|
||||
# ./scripts/logs.sh postgres # Specific service
|
||||
# ./scripts/logs.sh -n 100 # Last 100 lines
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
SERVICE="${1:-}"
|
||||
EXTRA_ARGS="${@:2}"
|
||||
|
||||
if [[ -n "$SERVICE" && "$SERVICE" != -* ]]; then
|
||||
echo "Following logs for service: $SERVICE"
|
||||
docker compose logs -f "$SERVICE" $EXTRA_ARGS
|
||||
else
|
||||
echo "Following logs for all services"
|
||||
docker compose logs -f $@
|
||||
fi
|
||||
38
scripts/run-detached.sh
Executable file
38
scripts/run-detached.sh
Executable file
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env bash
|
||||
# scripts/run-detached.sh - Start containers and wait for health
|
||||
#
|
||||
# Usage:
|
||||
# ./scripts/run-detached.sh
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
TIMEOUT=60
|
||||
INTERVAL=5
|
||||
|
||||
echo "Starting containers in detached mode..."
|
||||
docker compose up -d
|
||||
|
||||
echo "Waiting for services to become healthy..."
|
||||
elapsed=0
|
||||
|
||||
while [ $elapsed -lt $TIMEOUT ]; do
|
||||
# Check if postgres is ready
|
||||
if docker compose exec -T postgres pg_isready -U portfolio > /dev/null 2>&1; then
|
||||
echo "PostgreSQL is ready!"
|
||||
|
||||
# Check if app health endpoint responds (if running)
|
||||
if curl -sf http://localhost:8050/health > /dev/null 2>&1; then
|
||||
echo "Application health check passed!"
|
||||
echo "All services are healthy."
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "Waiting... ($elapsed/$TIMEOUT seconds)"
|
||||
sleep $INTERVAL
|
||||
elapsed=$((elapsed + INTERVAL))
|
||||
done
|
||||
|
||||
echo "ERROR: Health check timed out after $TIMEOUT seconds"
|
||||
docker compose ps
|
||||
exit 1
|
||||
Reference in New Issue
Block a user