51 Commits

Author SHA1 Message Date
058d058975 Merge branch 'staging' into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-02-02 22:02:57 +00:00
0455ec69a0 Merge branch 'main' into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-02-02 22:02:26 +00:00
9e216962b1 Merge pull request 'refactor: domain-scoped schema migration for application code' (#104) from feature/domain-scoped-schema-migration into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
Reviewed-on: #104
2026-02-02 22:01:48 +00:00
dfa5f92d8a refactor: update app code for domain-scoped schema migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Update dbt model references to use new schema naming (stg_toronto, int_toronto, mart_toronto)
- Refactor figure factories to use consistent column naming from new schema
- Update callbacks to work with refactored data structures
- Add centralized design tokens module for consistent styling
- Streamline CLAUDE.md documentation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 17:00:30 -05:00
3bd2005c9d Merge pull request 'Merge pull request 'development' (#99) from development into main' (#102) from main into staging
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Staging / deploy (push) Has been cancelled
Reviewed-on: #102
2026-02-02 17:35:06 +00:00
0c9769fd27 Merge branch 'staging' into main
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Production / deploy (push) Has been cancelled
CI / lint-and-test (pull_request) Has been cancelled
2026-02-02 17:34:58 +00:00
cb908a18c3 Merge pull request 'Merge pull request 'development' (#98) from development into staging' (#101) from staging into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
Reviewed-on: #101
2026-02-02 17:34:27 +00:00
558022f26e Merge branch 'development' into staging
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Staging / deploy (push) Has been cancelled
CI / lint-and-test (pull_request) Has been cancelled
2026-02-02 17:34:14 +00:00
9e27fb8011 Merge pull request 'refactor(dbt): migrate to domain-scoped schema names' (#100) from feature/domain-scoped-schema-migration into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
Reviewed-on: #100
2026-02-02 17:33:40 +00:00
cda2a078d9 refactor(dbt): migrate to domain-scoped schema names
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Create generate_schema_name macro to use custom schema names directly
- Update dbt_project.yml schemas: staging→stg_toronto, intermediate→int_toronto, marts→mart_toronto
- Add dbt/macros/toronto/ directory for future domain-specific macros
- Fix documentation drift in PROJECT_REFERENCE.md (load-data-only→load-toronto-only)
- Update DATABASE_SCHEMA.md with new schema names
- Update CLAUDE.md database schemas table
- Update adding-dashboard.md runbook with domain-scoped pattern

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 12:32:39 -05:00
dd8de9810d Merge pull request 'development' (#99) from development into main
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Production / deploy (push) Has been cancelled
Reviewed-on: #99
2026-02-02 00:39:19 +00:00
56bcc1bb1d Merge branch 'main' into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-02-02 00:39:13 +00:00
ee0a7ef7ad Merge pull request 'development' (#98) from development into staging
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Staging / deploy (push) Has been cancelled
CI / lint-and-test (pull_request) Has been cancelled
Reviewed-on: #98
2026-02-02 00:19:29 +00:00
fd9850778e Merge branch 'staging' into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-02-02 00:19:24 +00:00
01e98103c7 Merge pull request 'refactor: multi-dashboard structural migration' (#97) from feature/multi-dashboard-structure into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
Reviewed-on: #97
2026-02-02 00:18:45 +00:00
62d1a52eed refactor: multi-dashboard structural migration
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-01 19:08:20 -05:00
e37611673f Merge pull request 'staging' (#96) from staging into main
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Production / deploy (push) Has been cancelled
Reviewed-on: #96
2026-02-01 21:33:12 +00:00
33306a911b Merge pull request 'development' (#95) from development into staging
Some checks failed
CI / lint-and-test (push) Has been cancelled
Deploy to Staging / deploy (push) Has been cancelled
Reviewed-on: #95
2026-02-01 21:32:41 +00:00
a5d6866d63 feat(contact): implement Formspree contact form submission
Some checks failed
CI / lint-and-test (push) Has been cancelled
- Enable contact form fields with component IDs
- Add callback for Formspree POST with JSON/AJAX
- Include honeypot spam protection (_gotcha field)
- Handle validation, loading, success/error states
- Clear form on successful submission
- Add lessons learned documentation

Closes #92, #93, #94

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-01 15:00:04 -05:00
f58b2f70e2 chore(vscode): add workspace settings
Configure Python interpreter path for VSCode.

Co-Authored-By: Claude <noreply@anthropic.com>
2026-02-01 15:00:04 -05:00
263b52d5e4 docs: sync documentation with codebase
Some checks failed
CI / lint-and-test (push) Has been cancelled
Fixes identified by doc-guardian audit:

Critical fixes:
- DATABASE_SCHEMA.md: Fix staging model name stg_police__crimes → stg_toronto__crime
- DATABASE_SCHEMA.md: Update mart model names to match actual dbt models
- CLAUDE.md: Fix errors/ description (no handlers module exists)
- scripts/etl/toronto.sh: Fix parser module references to actual modules

Stale fixes:
- CONTRIBUTING.md: Add make typecheck, test-cov; fix make ci description
- PROJECT_REFERENCE.md: Document services/, callback modules, all Makefile targets
- CLAUDE.md: Expand Makefile commands, add plugin documentation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 16:25:29 -05:00
f345d41535 fix: Seed multi-year housing data for rent trend charts
Some checks failed
CI / lint-and-test (push) Has been cancelled
The seed script now inserts housing data for years 2019-2024 to
support rent trend line visualizations.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:44:08 -05:00
14701f334c fix: Complete seed script with all missing data + add statsmodels
Some checks failed
CI / lint-and-test (push) Has been cancelled
- Seed script now seeds: amenities, population, median_age, census
  housing columns, housing mart (rent/affordability), overview mart
  (safety_score, population)
- Add statsmodels dependency for scatter plot trendlines
- Add dbt/.user.yml to gitignore

All 15 notebooks now pass with valid data.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:21:14 -05:00
92763a17c4 fix: Use os.environ[] instead of .get() for DATABASE_URL
Some checks failed
CI / lint-and-test (push) Has been cancelled
Fixes Pylance type error - create_engine() expects str, not str | None.
Using direct access raises KeyError if not set, which is correct behavior.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:03:23 -05:00
546ee1cc92 fix: Include seed-data in load-data target
Some checks failed
CI / lint-and-test (push) Has been cancelled
Now `make load-data` automatically seeds development data (amenities,
median_age) after loading Toronto data. Renamed seed-amenities to
seed-data to reflect broader scope.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:52:31 -05:00
9cc2cf0e00 fix: Add median_age seeding to development data script
Some checks failed
CI / lint-and-test (push) Has been cancelled
Updates seed_amenity_data.py to also seed median_age values in
fact_census where missing, ensuring demographics notebooks work.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:49:57 -05:00
28f239e8cd fix: Update all notebooks to load .env for database credentials
Some checks failed
CI / lint-and-test (push) Has been cancelled
All 15 notebooks now use load_dotenv('../../.env') instead of
hardcoded fallback credentials.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:31:07 -05:00
c3de98c4a5 feat: Add seed_amenity_data script for notebook testing
Some checks failed
CI / lint-and-test (push) Has been cancelled
Adds script to populate sample amenity data when Toronto Open Data
API doesn't return neighbourhood IDs (requires spatial join).

Run with: make seed-amenities

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:02:57 -05:00
eee015efac fix: Load .env in amenity_radar notebook for database credentials
Some checks failed
CI / lint-and-test (push) Has been cancelled
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:43:43 -05:00
941305e71c fix: Update amenity_radar notebook to use correct radar API
Some checks failed
CI / lint-and-test (push) Has been cancelled
Use create_comparison_radar instead of create_radar_figure with
incorrect parameters.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:39:20 -05:00
54665bac63 revert: Remove unauthorized branch workflow instructions
Some checks failed
CI / lint-and-test (push) Has been cancelled
Removes instructions that were added without user authorization:
- Step about deleting feature branches after merge
- CRITICAL warning about development branch

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:36:09 -05:00
3eb32a4766 Merge feature/fix-notebook-schema into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 19:45:25 -05:00
69c4216cd5 fix: Update notebooks to use public_marts schema
dbt creates mart tables in public_marts schema, not public.
Updated all notebook SQL queries to use the correct schema.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 19:45:23 -05:00
6e00a17c05 Merge feature/add-dbt-deps into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 12:20:38 -05:00
8f3c5554f9 fix: Run dbt deps before dbt run to install packages
dbt requires packages specified in packages.yml to be installed
before running models. Added dbt deps step to the pipeline.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:20:26 -05:00
5839eabf1e Merge feature/fix-dbt-venv-path into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 12:18:28 -05:00
ebe48304d7 fix: Use venv dbt and show full error output
- Use .venv/bin/dbt if available, fall back to system dbt
- Show both stdout and stderr on dbt failures for better debugging

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:18:26 -05:00
2fc2a1bdb5 Merge feature/fix-dotenv-path into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 12:15:00 -05:00
6872aa510b fix: Use explicit path for .env file loading
load_dotenv() was searching from cwd, which may not be the project root.
Now explicitly passes PROJECT_ROOT / ".env" path.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:14:48 -05:00
9a1fc81f79 Merge feature/fix-dbt-env-vars into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 12:10:58 -05:00
cf6e874961 fix: Load .env file for dbt database credentials
dbt uses env_var() in profiles.yml to read POSTGRES_PASSWORD,
but subprocess.run() doesn't automatically load .env files.
Added python-dotenv to load credentials before dbt runs.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:10:46 -05:00
451dc10a10 Merge feature/fix-dbt-profiles into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 12:07:10 -05:00
193b9289b9 fix: Configure dbt to use local profiles.yml
- Rename profiles.yml.example to profiles.yml (uses env vars, safe to commit)
- Add --profiles-dir flag to dbt commands in load_toronto_data.py
- Add --profiles-dir flag to dbt targets in Makefile

This fixes the "Path '~/.dbt' does not exist" error when running make load-data.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:06:58 -05:00
7a16e6d121 Merge feature/fix-db-init-makefile into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 11:59:20 -05:00
ecc50e5d98 fix: Update db-init target to use Python script
The Makefile was looking for scripts/db/init.sh which doesn't exist.
Updated to call scripts/db/init_schema.py instead.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 11:59:19 -05:00
ae3742630e Merge feature/add-jupyter-dependency into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 11:25:20 -05:00
e70965b429 fix: Add jupyter and ipykernel to dev dependencies
Required to run the notebooks in notebooks/ directory.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 11:25:19 -05:00
25954f17bb Merge feature/add-pyproj-dependency into development
Some checks failed
CI / lint-and-test (push) Has been cancelled
2026-01-18 11:20:47 -05:00
bffd44a5a5 fix: Add pyproj as explicit dependency
pyproj is directly imported in portfolio_app/toronto/parsers/geo.py
but was only available as a transitive dependency of geopandas.
Adding it explicitly ensures reliable installation.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 11:20:40 -05:00
bf6e392002 feat: Sprint 10 - Architecture docs, CI/CD, operational scripts
Some checks failed
CI / lint-and-test (push) Has been cancelled
Phase 1 - Architecture Documentation:
- Add Architecture section with Mermaid flowchart to README
- Create docs/DATABASE_SCHEMA.md with full ERD

Phase 2 - CI/CD:
- Add CI badge to README
- Create .gitea/workflows/ci.yml for linting and tests
- Create .gitea/workflows/deploy-staging.yml
- Create .gitea/workflows/deploy-production.yml

Phase 3 - Operational Scripts:
- Create scripts/logs.sh for docker compose log following
- Create scripts/run-detached.sh with health check loop
- Create scripts/etl/toronto.sh for Toronto data pipeline
- Add Makefile targets: logs, run-detached, etl-toronto

Phase 4 - Runbooks:
- Create docs/runbooks/adding-dashboard.md
- Create docs/runbooks/deployment.md

Phase 5 - Hygiene:
- Create MIT LICENSE file

Phase 6 - Production:
- Add live demo link to README (leodata.science)

Closes #78, #79, #80, #81, #82, #83, #84, #85, #86, #87, #88, #89, #91

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 17:10:30 -05:00
d0f32edba7 fix: Repair data pipeline with StatCan CMHC rental data
- Add StatCan CMHC parser to fetch rental data from Statistics Canada API
- Create year spine (2014-2025) as time dimension driver instead of census
- Add CMA-level rental and income intermediate models
- Update mart_neighbourhood_overview to use rental years as base
- Fix neighbourhood_service queries to match dbt schema
- Add CMHC data loading to pipeline script

Data now flows correctly: 158 neighbourhoods × 12 years = 1,896 records
Rent data available 2019-2025, crime data 2014-2024

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 15:38:31 -05:00
105 changed files with 4522 additions and 1176 deletions

35
.gitea/workflows/ci.yml Normal file
View File

@@ -0,0 +1,35 @@
name: CI
on:
push:
branches:
- development
- staging
- main
pull_request:
branches:
- development
jobs:
lint-and-test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
pip install ruff pytest
- name: Run linter
run: ruff check .
- name: Run tests
run: pytest tests/ -v --tb=short

View File

@@ -0,0 +1,44 @@
name: Deploy to Production
on:
push:
branches:
- main
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Deploy to Production Server
uses: appleboy/ssh-action@v1.0.3
with:
host: ${{ secrets.PROD_HOST }}
username: ${{ secrets.PROD_USER }}
key: ${{ secrets.PROD_SSH_KEY }}
script: |
set -euo pipefail
cd ~/apps/personal-portfolio
echo "Pulling latest changes..."
git fetch origin main
git reset --hard origin/main
echo "Activating virtual environment..."
source .venv/bin/activate
echo "Installing dependencies..."
pip install -r requirements.txt --quiet
echo "Running dbt models..."
cd dbt && dbt run --profiles-dir . && cd ..
echo "Restarting application..."
docker compose down
docker compose up -d
echo "Waiting for health check..."
sleep 10
curl -f http://localhost:8050/health || exit 1
echo "Production deployment complete!"

View File

@@ -0,0 +1,44 @@
name: Deploy to Staging
on:
push:
branches:
- staging
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Deploy to Staging Server
uses: appleboy/ssh-action@v1.0.3
with:
host: ${{ secrets.STAGING_HOST }}
username: ${{ secrets.STAGING_USER }}
key: ${{ secrets.STAGING_SSH_KEY }}
script: |
set -euo pipefail
cd ~/apps/personal-portfolio
echo "Pulling latest changes..."
git fetch origin staging
git reset --hard origin/staging
echo "Activating virtual environment..."
source .venv/bin/activate
echo "Installing dependencies..."
pip install -r requirements.txt --quiet
echo "Running dbt models..."
cd dbt && dbt run --profiles-dir . && cd ..
echo "Restarting application..."
docker compose down
docker compose up -d
echo "Waiting for health check..."
sleep 10
curl -f http://localhost:8050/health || exit 1
echo "Staging deployment complete!"

1
.gitignore vendored
View File

@@ -198,3 +198,4 @@ cython_debug/
# PyPI configuration file
.pypirc
dbt/.user.yml

3
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,3 @@
{
"python.defaultInterpreterPath": "/home/leomiranda/WorkDev/personal/personal-portfolio/.venv/bin/python"
}

385
CLAUDE.md
View File

@@ -1,5 +1,48 @@
# CLAUDE.md
## ⛔ MANDATORY BEHAVIOR RULES - READ FIRST
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
### 1. WHEN USER ASKS YOU TO CHECK SOMETHING - CHECK EVERYTHING
- Search ALL locations, not just where you think it is
- Check cache directories: `~/.claude/plugins/cache/`
- Check installed: `~/.claude/plugins/marketplaces/`
- Check source directories
- **NEVER say "no" or "that's not the issue" without exhaustive verification**
### 2. WHEN USER SAYS SOMETHING IS WRONG - BELIEVE THEM
- The user knows their system better than you
- Investigate thoroughly before disagreeing
- **Your confidence is often wrong. User's instincts are often right.**
### 3. NEVER SAY "DONE" WITHOUT VERIFICATION
- Run the actual command/script to verify
- Show the output to the user
- **"Done" means VERIFIED WORKING, not "I made changes"**
### 4. SHOW EXACTLY WHAT USER ASKS FOR
- If user asks for messages, show the MESSAGES
- If user asks for code, show the CODE
- **Do not interpret or summarize unless asked**
**FAILURE TO FOLLOW THESE RULES = WASTED USER TIME = UNACCEPTABLE**
---
## Mandatory Behavior Rules
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
1. **CHECK EVERYTHING** - Search ALL locations before saying "no" (cache, installed, source directories)
2. **BELIEVE THE USER** - Investigate thoroughly before disagreeing; user instincts are often right
3. **VERIFY BEFORE "DONE"** - Run commands, show output; "done" means verified working
4. **SHOW EXACTLY WHAT'S ASKED** - Do not interpret or summarize unless requested
---
Working context for Claude Code on the Analytics Portfolio project.
---
@@ -17,15 +60,33 @@ Working context for Claude Code on the Analytics Portfolio project.
### Run Commands
```bash
# Setup & Database
make setup # Install deps, create .env, init pre-commit
make docker-up # Start PostgreSQL + PostGIS
make docker-up # Start PostgreSQL + PostGIS (auto-detects x86/ARM)
make docker-down # Stop containers
make db-init # Initialize database schema
make db-reset # Drop and recreate database (DESTRUCTIVE)
# Data Loading
make load-data # Load all project data (currently: Toronto)
make load-toronto # Load Toronto data from APIs
# Application
make run # Start Dash dev server
# Testing & Quality
make test # Run pytest
make lint # Run ruff linter
make format # Run ruff formatter
make ci # Run all checks
make typecheck # Run mypy type checker
make ci # Run all checks (lint, typecheck, test)
# dbt
make dbt-run # Run dbt models
make dbt-test # Run dbt tests
make dbt-docs # Generate and serve dbt documentation
# Run `make help` for full target list
```
### Branch Workflow
@@ -33,10 +94,7 @@ make ci # Run all checks
1. Create feature branch FROM `development`: `git checkout -b feature/{sprint}-{description}`
2. Work and commit on feature branch
3. Merge INTO `development` when complete
4. Delete the feature branch after merge (keep branches clean)
5. `development` -> `staging` -> `main` for releases
**CRITICAL: NEVER DELETE the `development` branch. It is the main integration branch.**
4. `development` -> `staging` -> `main` for releases
---
@@ -52,125 +110,44 @@ make ci # Run all checks
### Module Responsibilities
| Directory | Contains | Purpose |
|-----------|----------|---------|
| `schemas/` | Pydantic models | Data validation |
| `models/` | SQLAlchemy ORM | Database persistence |
| `parsers/` | API/CSV extraction | Raw data ingestion |
| `loaders/` | Database operations | Data loading |
| `figures/` | Chart factories | Plotly figure generation |
| `callbacks/` | Dash callbacks | In `pages/{dashboard}/callbacks/` |
| `errors/` | Exceptions + handlers | Error handling |
### Type Hints
Use Python 3.10+ style:
```python
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
...
```
### Error Handling
```python
# errors/exceptions.py
class PortfolioError(Exception):
"""Base exception."""
class ParseError(PortfolioError):
"""PDF/CSV parsing failed."""
class ValidationError(PortfolioError):
"""Pydantic or business rule validation failed."""
class LoadError(PortfolioError):
"""Database load operation failed."""
```
| Directory | Purpose |
|-----------|---------|
| `schemas/` | Pydantic models for data validation |
| `models/` | SQLAlchemy ORM for database persistence |
| `parsers/` | API/CSV extraction for raw data ingestion |
| `loaders/` | Database operations for data loading |
| `services/` | Query functions for dbt mart queries |
| `figures/` | Chart factories for Plotly figure generation |
| `errors/` | Custom exception classes (see `errors/exceptions.py`) |
### Code Standards
- Python 3.10+ type hints: `list[str]`, `dict[str, int] | None`
- Single responsibility functions with verb naming
- Early returns over deep nesting
- Google-style docstrings only for non-obvious behavior
- Module-level constants for magic values
- Pydantic BaseSettings for runtime config
---
## Application Structure
```
portfolio_app/
├── app.py # Dash app factory with Pages routing
├── config.py # Pydantic BaseSettings
├── assets/ # CSS, images (auto-served)
│ └── sidebar.css # Navigation styling
├── callbacks/ # Global callbacks
│ ├── sidebar.py # Sidebar toggle
│ └── theme.py # Dark/light theme
├── pages/
│ ├── home.py # Bio landing page -> /
│ ├── about.py # About page -> /about
│ ├── contact.py # Contact form -> /contact
│ ├── health.py # Health endpoint -> /health
│ ├── projects.py # Project showcase -> /projects
│ ├── resume.py # Resume/CV -> /resume
│ ├── blog/
│ │ ├── index.py # Blog listing -> /blog
│ │ └── article.py # Blog article -> /blog/{slug}
│ └── toronto/
│ ├── dashboard.py # Dashboard -> /toronto
│ ├── methodology.py # Methodology -> /toronto/methodology
│ ├── tabs/ # 5 tab layouts (overview, housing, safety, demographics, amenities)
│ └── callbacks/ # Dashboard interactions
├── components/ # Shared UI (sidebar, cards, controls)
│ ├── metric_card.py # KPI card component
│ ├── map_controls.py # Map control panel
│ ├── sidebar.py # Navigation sidebar
│ └── time_slider.py # Time range selector
├── figures/ # Shared chart factories
│ ├── choropleth.py # Map visualizations
│ ├── bar_charts.py # Ranking, stacked, horizontal bars
│ ├── scatter.py # Scatter and bubble plots
│ ├── radar.py # Radar/spider charts
│ ├── demographics.py # Age pyramids, donut charts
│ ├── time_series.py # Trend lines
│ └── summary_cards.py # KPI figures
├── content/ # Markdown content
│ └── blog/ # Blog articles
├── toronto/ # Toronto data logic
│ ├── parsers/
│ ├── loaders/
│ ├── schemas/ # Pydantic
│ ├── models/ # SQLAlchemy
│ └── demo_data.py # Sample data
├── utils/ # Utilities
│ └── markdown_loader.py # Markdown processing
└── errors/
**Entry Point:** `portfolio_app/app.py` (Dash app factory with Pages routing)
notebooks/ # Data documentation (Phase 6)
├── README.md # Template and usage guide
├── overview/ # Overview tab notebooks (3)
├── housing/ # Housing tab notebooks (3)
├── safety/ # Safety tab notebooks (3)
├── demographics/ # Demographics tab notebooks (3)
└── amenities/ # Amenities tab notebooks (3)
```
| Directory | Purpose |
|-----------|---------|
| `pages/` | Dash Pages (file-based routing) |
| `pages/toronto/` | Toronto Dashboard (`tabs/` for layouts, `callbacks/` for interactions) |
| `components/` | Shared UI components |
| `figures/toronto/` | Toronto chart factories |
| `toronto/` | Toronto data logic (parsers, loaders, schemas, models) |
### URL Routing
**Key URLs:** `/` (home), `/toronto` (dashboard), `/blog` (listing), `/blog/{slug}` (articles), `/health` (status)
| URL | Page | Sprint |
|-----|------|--------|
| `/` | Bio landing page | 2 |
| `/about` | About page | 8 |
| `/contact` | Contact form | 8 |
| `/health` | Health endpoint | 8 |
| `/projects` | Project showcase | 8 |
| `/resume` | Resume/CV | 8 |
| `/blog` | Blog listing | 8 |
| `/blog/{slug}` | Blog article | 8 |
| `/toronto` | Toronto Dashboard | 6 |
| `/toronto/methodology` | Dashboard methodology | 6 |
### Multi-Dashboard Architecture
- **figures/**: Domain-namespaced (`figures/toronto/`, future: `figures/football/`)
- **dbt models**: Domain subdirectories (`staging/toronto/`, `marts/toronto/`)
- **Database schemas**: Domain-specific raw data (`raw_toronto`, future: `raw_football`)
---
@@ -182,43 +159,31 @@ notebooks/ # Data documentation (Phase 6)
| Validation | Pydantic | >=2.0 |
| ORM | SQLAlchemy | >=2.0 (2.0-style API only) |
| Transformation | dbt-postgres | >=1.7 |
| Data Processing | Pandas | >=2.1 |
| Visualization | Dash + Plotly + dash-mantine-components | >=2.14 |
| Geospatial | GeoPandas + Shapely | >=0.14 |
| Visualization | Dash + Plotly | >=2.14 |
| UI Components | dash-mantine-components | Latest stable |
| Testing | pytest | >=7.0 |
| Python | 3.11+ | Via pyenv |
**Notes**:
- SQLAlchemy 2.0 + Pydantic 2.0 only (never mix 1.x APIs)
- PostGIS extension required in database
- Docker Compose V2 format (no `version` field)
**Notes**: SQLAlchemy 2.0 + Pydantic 2.0 only. Docker Compose V2 format (no `version` field).
---
## Data Model Overview
### Geographic Reality (Toronto Housing)
### Database Schemas
```
City Neighbourhoods (158) - Primary geographic unit for analysis
CMHC Zones (~20) - Rental data (Census Tract aligned)
```
| Schema | Purpose |
|--------|---------|
| `public` | Shared dimensions (dim_time) |
| `raw_toronto` | Toronto-specific raw/dimension tables |
| `stg_toronto` | Toronto dbt staging views |
| `int_toronto` | Toronto dbt intermediate views |
| `mart_toronto` | Toronto dbt mart tables |
### Star Schema
| Table | Type | Keys |
|-------|------|------|
| `fact_rentals` | Fact | -> dim_time, dim_cmhc_zone |
| `dim_time` | Dimension | date_key (PK) |
| `dim_cmhc_zone` | Dimension | zone_key (PK), geometry |
| `dim_neighbourhood` | Dimension | neighbourhood_id (PK), geometry |
| `dim_policy_event` | Dimension | event_id (PK) |
### dbt Layers
### dbt Project: `portfolio`
| Layer | Naming | Purpose |
|-------|--------|---------|
| Shared | `stg_dimensions__*` | Cross-domain dimensions |
| Staging | `stg_{source}__{entity}` | 1:1 source, cleaned, typed |
| Intermediate | `int_{domain}__{transform}` | Business logic |
| Marts | `mart_{domain}` | Final analytical tables |
@@ -227,13 +192,12 @@ CMHC Zones (~20) - Rental data (Census Tract aligned)
## Deferred Features
**Stop and flag if a task seems to require these**:
**Stop and flag if a task requires these**:
| Feature | Reason |
|---------|--------|
| Historical boundary reconciliation (140->158) | 2021+ data only for V1 |
| ML prediction models | Energy project scope (future phase) |
| Multi-project shared infrastructure | Build first, abstract second |
---
@@ -253,92 +217,123 @@ LOG_LEVEL=INFO
---
## Script Standards
All scripts in `scripts/`:
- Include usage comments at top
- Idempotent where possible
- Exit codes: 0 = success, 1 = error
- Use `set -euo pipefail` for bash
- Log to stdout, errors to stderr
---
## Reference Documents
| Document | Location | Use When |
|----------|----------|----------|
| Project reference | `docs/PROJECT_REFERENCE.md` | Architecture decisions, completed work |
| Developer guide | `docs/CONTRIBUTING.md` | How to add pages, blog posts, tabs |
| Project reference | `docs/PROJECT_REFERENCE.md` | Architecture decisions |
| Developer guide | `docs/CONTRIBUTING.md` | How to add pages, tabs |
| Lessons learned | `docs/project-lessons-learned/INDEX.md` | Past issues and solutions |
| Deployment runbook | `docs/runbooks/deployment.md` | Deploying to environments |
---
## Projman Plugin Workflow
## Plugin Reference
**CRITICAL: Always use the projman plugin for sprint and task management.**
### Sprint Management: projman
### When to Use Projman Skills
**CRITICAL: Always use projman for sprint and task management.**
| Skill | Trigger | Purpose |
|-------|---------|---------|
| `/projman:sprint-plan` | New sprint or phase implementation | Architecture analysis + Gitea issue creation |
| `/projman:sprint-start` | Beginning implementation work | Load lessons learned (Wiki.js or local), start execution |
| `/projman:sprint-status` | Check progress | Review blockers and completion status |
| `/projman:sprint-close` | Sprint completion | Capture lessons learned (Wiki.js or local backup) |
| `/projman:sprint-plan` | New sprint/feature | Architecture analysis + Gitea issue creation |
| `/projman:sprint-start` | Begin implementation | Load lessons learned, start execution |
| `/projman:sprint-status` | Check progress | Review blockers and completion |
| `/projman:sprint-close` | Sprint completion | Capture lessons learned |
### Default Behavior
**Default workflow**: `/projman:sprint-plan` before code -> create issues -> `/projman:sprint-start` -> track via Gitea -> `/projman:sprint-close`
When user requests implementation work:
**Gitea**: `personal-projects/personal-portfolio` at `gitea.hotserv.cloud`
1. **ALWAYS start with `/projman:sprint-plan`** before writing code
2. Create Gitea issues with proper labels and acceptance criteria
3. Use `/projman:sprint-start` to begin execution with lessons learned
4. Track progress via Gitea issue comments
5. Close sprint with `/projman:sprint-close` to document lessons
### Data Platform: data-platform
### Gitea Repository
Use for dbt, PostgreSQL, and PostGIS operations.
- **Repo**: `lmiranda/personal-portfolio`
- **Host**: `gitea.hotserv.cloud`
- **Note**: `lmiranda` is a user account (not org), so label lookup may require repo-level labels
| Skill | Purpose |
|-------|---------|
| `/data-platform:data-review` | Audit data integrity, schema validity, dbt compliance |
| `/data-platform:data-gate` | CI/CD data quality gate (pass/fail) |
### MCP Tools Available
**When to use:** Schema changes, dbt model development, data loading, before merging data PRs.
**Gitea**:
- `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment`
- `get_labels`, `suggest_labels`
**MCP tools available:** `pg_connect`, `pg_query`, `pg_tables`, `pg_columns`, `pg_schemas`, `st_*` (PostGIS), `dbt_*` operations.
**Wiki.js**:
- `search_lessons`, `create_lesson`, `search_pages`, `get_page`
### Visualization: viz-platform
### Lessons Learned (Backup Method)
Use for Dash/Mantine component validation and chart creation.
**When Wiki.js is unavailable**, use the local backup in `docs/project-lessons-learned/`:
| Skill | Purpose |
|-------|---------|
| `/viz-platform:component` | Inspect DMC component props and validation |
| `/viz-platform:chart` | Create themed Plotly charts |
| `/viz-platform:theme` | Apply/validate themes |
| `/viz-platform:dashboard` | Create dashboard layouts |
**At Sprint Start:**
1. Review `docs/project-lessons-learned/INDEX.md` for relevant past lessons
2. Search lesson files by tags/keywords before implementation
3. Apply prevention strategies from applicable lessons
**When to use:** Dashboard development, new visualizations, component prop lookup.
**At Sprint Close:**
1. Try Wiki.js `create_lesson` first
2. If Wiki.js fails, create lesson in `docs/project-lessons-learned/`
3. Use naming convention: `{phase-or-sprint}-{short-description}.md`
4. Update `INDEX.md` with new entry
5. Follow the lesson template in INDEX.md
### Code Quality: code-sentinel
**Migration:** Once Wiki.js is configured, lessons will be migrated there for better searchability.
Use for security scanning and refactoring analysis.
### Issue Structure
| Skill | Purpose |
|-------|---------|
| `/code-sentinel:security-scan` | Full security audit of codebase |
| `/code-sentinel:refactor` | Apply refactoring patterns |
| `/code-sentinel:refactor-dry` | Preview refactoring without applying |
Every Gitea issue should include:
- **Overview**: Brief description
- **Files to Create/Modify**: Explicit paths
- **Acceptance Criteria**: Checkboxes
- **Technical Notes**: Implementation hints
- **Labels**: Listed in body (workaround for label API issues)
**When to use:** Before major releases, after adding auth/data handling code, periodic audits.
### Documentation: doc-guardian
Use for documentation drift detection and synchronization.
| Skill | Purpose |
|-------|---------|
| `/doc-guardian:doc-audit` | Scan project for documentation drift |
| `/doc-guardian:doc-sync` | Synchronize pending documentation updates |
**When to use:** After significant code changes, before releases.
### Pull Requests: pr-review
Use for comprehensive PR review with multiple analysis perspectives.
| Skill | Purpose |
|-------|---------|
| `/pr-review:initial-setup` | Configure PR review for project |
| Triggered automatically | Security, performance, maintainability, test analysis |
**When to use:** Before merging significant PRs to `development` or `main`.
### Requirement Clarification: clarity-assist
Use when requirements are ambiguous or need decomposition.
**When to use:** Unclear specifications, complex feature requests, conflicting requirements.
### Contract Validation: contract-validator
Use for plugin interface validation.
| Skill | Purpose |
|-------|---------|
| `/contract-validator:agent-check` | Quick agent definition validation |
| `/contract-validator:full-validation` | Full plugin contract validation |
**When to use:** When modifying plugin integrations or agent definitions.
### Git Workflow: git-flow
Use for standardized git operations.
| Skill | Purpose |
|-------|---------|
| `/git-flow:commit` | Auto-generated conventional commit |
| `/git-flow:branch-start` | Create feature/fix/chore branch |
| `/git-flow:git-status` | Comprehensive status with recommendations |
**When to use:** Complex merge scenarios, branch management, standardized commits.
---
*Last Updated: January 2026 (Post-Sprint 9)*
*Last Updated: February 2026*

21
LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024-2025 Leo Miranda
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,13 +1,25 @@
.PHONY: setup docker-up docker-down db-init load-data run test dbt-run dbt-test lint format ci deploy clean help
.PHONY: setup docker-up docker-down db-init load-data load-all load-toronto load-toronto-only seed-data run test dbt-run dbt-test lint format ci deploy clean help logs run-detached etl-toronto
# Default target
.DEFAULT_GOAL := help
# Environment
PYTHON := python3
PIP := pip
VENV := .venv
PYTHON := $(VENV)/bin/python3
PIP := $(VENV)/bin/pip
DOCKER_COMPOSE := docker compose
# Architecture detection for Docker images
ARCH := $(shell uname -m)
ifeq ($(ARCH),aarch64)
POSTGIS_IMAGE := imresamu/postgis:16-3.4
else ifeq ($(ARCH),arm64)
POSTGIS_IMAGE := imresamu/postgis:16-3.4
else
POSTGIS_IMAGE := postgis/postgis:16-3.4
endif
export POSTGIS_IMAGE
# Colors for output
BLUE := \033[0;34m
GREEN := \033[0;32m
@@ -39,6 +51,7 @@ setup: ## Install dependencies, create .env, init pre-commit
docker-up: ## Start PostgreSQL + PostGIS containers
@echo "$(GREEN)Starting database containers...$(NC)"
@echo "$(BLUE)Architecture: $(ARCH) -> Using image: $(POSTGIS_IMAGE)$(NC)"
$(DOCKER_COMPOSE) up -d
@echo "$(GREEN)Waiting for database to be ready...$(NC)"
@sleep 3
@@ -57,11 +70,7 @@ docker-logs: ## View container logs
db-init: ## Initialize database schema
@echo "$(GREEN)Initializing database schema...$(NC)"
@if [ -f scripts/db/init.sh ]; then \
bash scripts/db/init.sh; \
else \
echo "$(YELLOW)scripts/db/init.sh not found - skipping$(NC)"; \
fi
$(PYTHON) scripts/db/init_schema.py
db-reset: ## Drop and recreate database (DESTRUCTIVE)
@echo "$(YELLOW)WARNING: This will delete all data!$(NC)"
@@ -71,14 +80,27 @@ db-reset: ## Drop and recreate database (DESTRUCTIVE)
@sleep 3
$(MAKE) db-init
load-data: ## Load Toronto data from APIs and run dbt
# Domain-specific data loading
load-toronto: ## Load Toronto data from APIs
@echo "$(GREEN)Loading Toronto neighbourhood data...$(NC)"
$(PYTHON) scripts/data/load_toronto_data.py
@echo "$(GREEN)Seeding Toronto development data...$(NC)"
$(PYTHON) scripts/data/seed_amenity_data.py
load-data-only: ## Load Toronto data without running dbt
load-toronto-only: ## Load Toronto data without running dbt or seeding
@echo "$(GREEN)Loading Toronto data (skip dbt)...$(NC)"
$(PYTHON) scripts/data/load_toronto_data.py --skip-dbt
# Aggregate data loading
load-data: load-toronto ## Load all project data (currently: Toronto)
@echo "$(GREEN)All data loaded!$(NC)"
load-all: load-data ## Alias for load-data
seed-data: ## Seed sample development data (amenities, median_age)
@echo "$(GREEN)Seeding development data...$(NC)"
$(PYTHON) scripts/data/seed_amenity_data.py
# =============================================================================
# Application
# =============================================================================
@@ -105,15 +127,15 @@ test-cov: ## Run pytest with coverage
dbt-run: ## Run dbt models
@echo "$(GREEN)Running dbt models...$(NC)"
cd dbt && dbt run
@set -a && . ./.env && set +a && cd dbt && dbt run --profiles-dir .
dbt-test: ## Run dbt tests
@echo "$(GREEN)Running dbt tests...$(NC)"
cd dbt && dbt test
@set -a && . ./.env && set +a && cd dbt && dbt test --profiles-dir .
dbt-docs: ## Generate dbt documentation
@echo "$(GREEN)Generating dbt docs...$(NC)"
cd dbt && dbt docs generate && dbt docs serve
@set -a && . ./.env && set +a && cd dbt && dbt docs generate --profiles-dir . && dbt docs serve --profiles-dir .
# =============================================================================
# Code Quality
@@ -139,6 +161,19 @@ ci: ## Run all checks (lint, typecheck, test)
$(MAKE) test
@echo "$(GREEN)All checks passed!$(NC)"
# =============================================================================
# Operations
# =============================================================================
logs: ## Follow docker compose logs (usage: make logs or make logs SERVICE=postgres)
@./scripts/logs.sh $(SERVICE)
run-detached: ## Start containers and wait for health check
@./scripts/run-detached.sh
etl-toronto: ## Run Toronto ETL pipeline (usage: make etl-toronto MODE=--full)
@./scripts/etl/toronto.sh $(MODE)
# =============================================================================
# Deployment
# =============================================================================

View File

@@ -1,5 +1,9 @@
# Analytics Portfolio
[![CI](https://gitea.hotserv.cloud/lmiranda/personal-portfolio/actions/workflows/ci.yml/badge.svg)](https://gitea.hotserv.cloud/lmiranda/personal-portfolio/actions)
**Live Demo:** [leodata.science](https://leodata.science)
A personal portfolio website showcasing data engineering and visualization capabilities, featuring an interactive Toronto Neighbourhood Dashboard.
## Live Pages
@@ -32,6 +36,42 @@ An interactive choropleth dashboard analyzing Toronto's 158 official neighbourho
- Toronto Police Service (crime statistics)
- CMHC Rental Market Survey (rental data by zone)
## Architecture
```mermaid
flowchart LR
subgraph Sources
A1[City of Toronto API]
A2[Toronto Police API]
A3[CMHC Data]
end
subgraph ETL
B1[Parsers]
B2[Loaders]
end
subgraph Database
C1[(PostgreSQL/PostGIS)]
C2[dbt Models]
end
subgraph Application
D1[Dash App]
D2[Plotly Figures]
end
A1 & A2 & A3 --> B1 --> B2 --> C1 --> C2 --> D1 --> D2
```
**Pipeline Stages:**
- **Sources**: External APIs and data files (City of Toronto, Toronto Police, CMHC)
- **ETL**: Python parsers extract and validate data; loaders persist to database
- **Database**: PostgreSQL with PostGIS for geospatial; dbt transforms raw → staging → marts
- **Application**: Dash serves interactive dashboards with Plotly visualizations
For detailed database schema, see [docs/DATABASE_SCHEMA.md](docs/DATABASE_SCHEMA.md).
## Quick Start
```bash
@@ -75,28 +115,31 @@ portfolio_app/
│ ├── tabs/ # Tab layouts (5)
│ └── callbacks/ # Interaction logic
├── components/ # Shared UI components
├── figures/ # Plotly figure factories
├── figures/
│ └── toronto/ # Toronto figure factories
├── content/
│ └── blog/ # Markdown blog articles
├── toronto/ # Toronto data logic
│ ├── parsers/ # API data extraction
│ ├── loaders/ # Database operations
│ ├── schemas/ # Pydantic models
│ └── models/ # SQLAlchemy ORM
│ └── models/ # SQLAlchemy ORM (raw_toronto schema)
└── errors/ # Exception handling
dbt/
dbt/ # dbt project: portfolio
├── models/
│ ├── staging/ # 1:1 source tables
│ ├── intermediate/ # Business logic
── marts/ # Analytical tables
│ ├── shared/ # Cross-domain dimensions
│ ├── staging/toronto/ # Toronto staging models
── intermediate/toronto/ # Toronto intermediate models
│ └── marts/toronto/ # Toronto analytical tables
notebooks/ # Data documentation (15 notebooks)
── overview/ # Overview tab visualizations
├── housing/ # Housing tab visualizations
├── safety/ # Safety tab visualizations
├── demographics/ # Demographics tab visualizations
└── amenities/ # Amenities tab visualizations
notebooks/
── toronto/ # Toronto documentation (15 notebooks)
├── overview/ # Overview tab visualizations
├── housing/ # Housing tab visualizations
├── safety/ # Safety tab visualizations
├── demographics/ # Demographics tab visualizations
└── amenities/ # Amenities tab visualizations
docs/
├── PROJECT_REFERENCE.md # Architecture reference

View File

@@ -1,8 +1,7 @@
name: 'toronto_housing'
version: '1.0.0'
name: 'portfolio'
config-version: 2
profile: 'toronto_housing'
profile: 'portfolio'
model-paths: ["models"]
analysis-paths: ["analyses"]
@@ -16,13 +15,19 @@ clean-targets:
- "dbt_packages"
models:
toronto_housing:
portfolio:
shared:
+materialized: view
+schema: shared
staging:
+materialized: view
+schema: staging
toronto:
+materialized: view
+schema: stg_toronto
intermediate:
+materialized: view
+schema: intermediate
toronto:
+materialized: view
+schema: int_toronto
marts:
+materialized: table
+schema: marts
toronto:
+materialized: table
+schema: mart_toronto

View File

@@ -0,0 +1,11 @@
-- Override dbt default schema name generation.
-- Use the custom schema name directly instead of
-- concatenating with the target schema.
-- See: https://docs.getdbt.com/docs/build/custom-schemas
{% macro generate_schema_name(custom_schema_name, node) %}
{%- if custom_schema_name is none -%}
{{ target.schema }}
{%- else -%}
{{ custom_schema_name | trim }}
{%- endif -%}
{% endmacro %}

View File

@@ -5,11 +5,11 @@ models:
description: "Rental data enriched with time and zone dimensions"
columns:
- name: rental_id
tests:
data_tests:
- unique
- not_null
- name: zone_code
tests:
data_tests:
- not_null
- name: int_neighbourhood__demographics
@@ -17,11 +17,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: census_year
description: "Census year"
tests:
data_tests:
- not_null
- name: income_quintile
description: "Income quintile (1-5, city-wide)"
@@ -31,7 +31,7 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: year
description: "Reference year"
@@ -45,11 +45,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: year
description: "Statistics year"
tests:
data_tests:
- not_null
- name: crime_rate_per_100k
description: "Total crime rate per 100K population"
@@ -61,7 +61,7 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: year
description: "Reference year"
@@ -75,11 +75,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: year
description: "Survey year"
tests:
data_tests:
- not_null
- name: avg_rent_2bed
description: "Weighted average 2-bedroom rent"

View File

@@ -0,0 +1,60 @@
-- Intermediate: Toronto CMA census statistics by year
-- Provides city-wide averages for metrics not available at neighbourhood level
-- Used when neighbourhood-level data is unavailable (e.g., median household income)
-- Grain: One row per year
with years as (
select * from {{ ref('int_year_spine') }}
),
census as (
select * from {{ ref('stg_toronto__census') }}
),
-- Census data is only available for 2016 and 2021
-- Map each analysis year to the appropriate census year
year_to_census as (
select
y.year,
case
when y.year <= 2018 then 2016
else 2021
end as census_year
from years y
),
-- Toronto CMA median household income from Statistics Canada
-- Source: Census Profile Table 98-316-X2021001
-- 2016: $65,829 (from Census Profile)
-- 2021: $84,000 (from Census Profile)
cma_income as (
select 2016 as census_year, 65829 as median_household_income union all
select 2021 as census_year, 84000 as median_household_income
),
-- City-wide aggregates from loaded neighbourhood data
city_aggregates as (
select
census_year,
sum(population) as total_population,
avg(population_density) as avg_population_density,
avg(unemployment_rate) as avg_unemployment_rate
from census
where population is not null
group by census_year
),
final as (
select
y.year,
y.census_year,
ci.median_household_income,
ca.total_population,
ca.avg_population_density,
ca.avg_unemployment_rate
from year_to_census y
left join cma_income ci on y.census_year = ci.census_year
left join city_aggregates ca on y.census_year = ca.census_year
)
select * from final

View File

@@ -34,7 +34,7 @@ amenity_scores as (
n.population,
n.land_area_sqkm,
a.year,
coalesce(a.year, 2021) as year,
-- Raw counts
a.parks_count,

View File

@@ -16,12 +16,12 @@ crime_by_year as (
neighbourhood_id,
crime_year as year,
sum(incident_count) as total_incidents,
sum(case when crime_type = 'Assault' then incident_count else 0 end) as assault_count,
sum(case when crime_type = 'Auto Theft' then incident_count else 0 end) as auto_theft_count,
sum(case when crime_type = 'Break and Enter' then incident_count else 0 end) as break_enter_count,
sum(case when crime_type = 'Robbery' then incident_count else 0 end) as robbery_count,
sum(case when crime_type = 'Theft Over' then incident_count else 0 end) as theft_over_count,
sum(case when crime_type = 'Homicide' then incident_count else 0 end) as homicide_count,
sum(case when crime_type = 'assault' then incident_count else 0 end) as assault_count,
sum(case when crime_type = 'auto_theft' then incident_count else 0 end) as auto_theft_count,
sum(case when crime_type = 'break_and_enter' then incident_count else 0 end) as break_enter_count,
sum(case when crime_type = 'robbery' then incident_count else 0 end) as robbery_count,
sum(case when crime_type = 'theft_over' then incident_count else 0 end) as theft_over_count,
sum(case when crime_type = 'homicide' then incident_count else 0 end) as homicide_count,
avg(rate_per_100k) as avg_rate_per_100k
from crime
group by neighbourhood_id, crime_year
@@ -64,15 +64,17 @@ crime_summary as (
w.robbery_count,
w.theft_over_count,
w.homicide_count,
w.avg_rate_per_100k,
w.yoy_change_pct,
-- Crime rate per 100K population
case
when n.population > 0
then round(w.total_incidents::numeric / n.population * 100000, 2)
else null
end as crime_rate_per_100k
-- Crime rate per 100K population (use source data avg, or calculate if population available)
coalesce(
w.avg_rate_per_100k,
case
when n.population > 0
then round(w.total_incidents::numeric / n.population * 100000, 2)
else null
end
) as crime_rate_per_100k
from neighbourhoods n
inner join with_yoy w on n.neighbourhood_id = w.neighbourhood_id

View File

@@ -17,7 +17,8 @@ demographics as (
n.geometry,
n.land_area_sqkm,
c.census_year,
-- Use census_year from census data, or fall back to dim_neighbourhood's year
coalesce(c.census_year, n.census_year, 2021) as census_year,
c.population,
c.population_density,
c.median_household_income,

View File

@@ -20,7 +20,7 @@ housing as (
n.neighbourhood_name,
n.geometry,
coalesce(r.year, c.census_year) as year,
coalesce(r.year, c.census_year, 2021) as year,
-- Census housing metrics
c.pct_owner_occupied,

View File

@@ -42,10 +42,10 @@ pivoted as (
select
neighbourhood_id,
year,
max(case when bedroom_type = 'Two Bedroom' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_2bed,
max(case when bedroom_type = 'One Bedroom' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_1bed,
max(case when bedroom_type = 'Bachelor' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_bachelor,
max(case when bedroom_type = 'Three Bedroom +' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_3bed,
max(case when bedroom_type = '2bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_2bed,
max(case when bedroom_type = '1bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_1bed,
max(case when bedroom_type = 'bachelor' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_bachelor,
max(case when bedroom_type = '3bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_3bed,
avg(vacancy_rate) as vacancy_rate,
sum(rental_units_estimate) as total_rental_units
from allocated

View File

@@ -0,0 +1,25 @@
-- Intermediate: Toronto CMA rental metrics by year
-- Aggregates rental data to city-wide averages by year
-- Source: StatCan CMHC data at CMA level
-- Grain: One row per year
with rentals as (
select * from {{ ref('stg_cmhc__rentals') }}
),
-- Pivot bedroom types to columns
yearly_rentals as (
select
year,
max(case when bedroom_type = 'bachelor' then avg_rent end) as avg_rent_bachelor,
max(case when bedroom_type = '1bed' then avg_rent end) as avg_rent_1bed,
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_2bed,
max(case when bedroom_type = '3bed' then avg_rent end) as avg_rent_3bed,
-- Use 2-bedroom as standard reference
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_standard,
max(vacancy_rate) as vacancy_rate
from rentals
group by year
)
select * from yearly_rentals

View File

@@ -0,0 +1,11 @@
-- Intermediate: Year spine for analysis
-- Creates a row for each year from 2014-2025
-- Used to drive time-series analysis across all data sources
with years as (
-- Generate years from available data sources
-- Crime data: 2014-2024, Rentals: 2019-2025
select generate_series(2014, 2025) as year
)
select year from years

View File

@@ -1,110 +0,0 @@
-- Mart: Neighbourhood Overview with Composite Livability Score
-- Dashboard Tab: Overview
-- Grain: One row per neighbourhood per year
with demographics as (
select * from {{ ref('int_neighbourhood__demographics') }}
),
housing as (
select * from {{ ref('int_neighbourhood__housing') }}
),
crime as (
select * from {{ ref('int_neighbourhood__crime_summary') }}
),
amenities as (
select * from {{ ref('int_neighbourhood__amenity_scores') }}
),
-- Compute percentile ranks for scoring components
percentiles as (
select
d.neighbourhood_id,
d.neighbourhood_name,
d.geometry,
d.census_year as year,
d.population,
d.median_household_income,
-- Safety score: inverse of crime rate (higher = safer)
case
when c.crime_rate_per_100k is not null
then 100 - percent_rank() over (
partition by d.census_year
order by c.crime_rate_per_100k
) * 100
else null
end as safety_score,
-- Affordability score: inverse of rent-to-income ratio
case
when h.rent_to_income_pct is not null
then 100 - percent_rank() over (
partition by d.census_year
order by h.rent_to_income_pct
) * 100
else null
end as affordability_score,
-- Amenity score: based on amenities per capita
case
when a.total_amenities_per_1000 is not null
then percent_rank() over (
partition by d.census_year
order by a.total_amenities_per_1000
) * 100
else null
end as amenity_score,
-- Raw metrics for reference
c.crime_rate_per_100k,
h.rent_to_income_pct,
h.avg_rent_2bed,
a.total_amenities_per_1000
from demographics d
left join housing h
on d.neighbourhood_id = h.neighbourhood_id
and d.census_year = h.year
left join crime c
on d.neighbourhood_id = c.neighbourhood_id
and d.census_year = c.year
left join amenities a
on d.neighbourhood_id = a.neighbourhood_id
and d.census_year = a.year
),
final as (
select
neighbourhood_id,
neighbourhood_name,
geometry,
year,
population,
median_household_income,
-- Component scores (0-100)
round(safety_score::numeric, 1) as safety_score,
round(affordability_score::numeric, 1) as affordability_score,
round(amenity_score::numeric, 1) as amenity_score,
-- Composite livability score: safety (30%), affordability (40%), amenities (30%)
round(
(coalesce(safety_score, 50) * 0.30 +
coalesce(affordability_score, 50) * 0.40 +
coalesce(amenity_score, 50) * 0.30)::numeric,
1
) as livability_score,
-- Raw metrics
crime_rate_per_100k,
rent_to_income_pct,
avg_rent_2bed,
total_amenities_per_1000
from percentiles
)
select * from final

View File

@@ -6,7 +6,7 @@ models:
columns:
- name: rental_id
description: "Unique rental record identifier"
tests:
data_tests:
- unique
- not_null
@@ -17,11 +17,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry for mapping"
@@ -41,11 +41,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry for mapping"
@@ -63,11 +63,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry for mapping"
@@ -77,7 +77,7 @@ models:
description: "100 = city average crime rate"
- name: safety_tier
description: "Safety tier (1=safest, 5=highest crime)"
tests:
data_tests:
- accepted_values:
arguments:
values: [1, 2, 3, 4, 5]
@@ -89,11 +89,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry for mapping"
@@ -103,7 +103,7 @@ models:
description: "100 = city average income"
- name: income_quintile
description: "Income quintile (1-5)"
tests:
data_tests:
- accepted_values:
arguments:
values: [1, 2, 3, 4, 5]
@@ -115,11 +115,11 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood identifier"
tests:
data_tests:
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry for mapping"
@@ -129,7 +129,7 @@ models:
description: "100 = city average amenities"
- name: amenity_tier
description: "Amenity tier (1=best, 5=lowest)"
tests:
data_tests:
- accepted_values:
arguments:
values: [1, 2, 3, 4, 5]

View File

@@ -0,0 +1,153 @@
-- Mart: Neighbourhood Overview with Composite Livability Score
-- Dashboard Tab: Overview
-- Grain: One row per neighbourhood per year
-- Time spine: Years 2014-2025 (driven by crime/rental data availability)
with years as (
select * from {{ ref('int_year_spine') }}
),
neighbourhoods as (
select * from {{ ref('stg_toronto__neighbourhoods') }}
),
-- Create base: all neighbourhoods × all years
neighbourhood_years as (
select
n.neighbourhood_id,
n.neighbourhood_name,
n.geometry,
y.year
from neighbourhoods n
cross join years y
),
-- Census data (available for 2016, 2021)
-- For each year, use the most recent census data available
census as (
select * from {{ ref('stg_toronto__census') }}
),
census_mapped as (
select
ny.neighbourhood_id,
ny.year,
c.population,
c.unemployment_rate,
c.pct_bachelors_or_higher as education_bachelors_pct
from neighbourhood_years ny
left join census c on ny.neighbourhood_id = c.neighbourhood_id
-- Use census year <= analysis year, prefer most recent
and c.census_year = (
select max(c2.census_year)
from {{ ref('stg_toronto__census') }} c2
where c2.neighbourhood_id = ny.neighbourhood_id
and c2.census_year <= ny.year
)
),
-- CMA-level census data (for income - not available at neighbourhood level)
cma_census as (
select * from {{ ref('int_census__toronto_cma') }}
),
-- Crime data (2014-2024)
crime as (
select * from {{ ref('int_neighbourhood__crime_summary') }}
),
-- Rentals (2019-2025) - CMA level applied to all neighbourhoods
rentals as (
select * from {{ ref('int_rentals__toronto_cma') }}
),
-- Compute scores
scored as (
select
ny.neighbourhood_id,
ny.neighbourhood_name,
ny.geometry,
ny.year,
cm.population,
-- Use CMA-level income (neighbourhood-level not available in Toronto Open Data)
cma.median_household_income,
-- Safety score: inverse of crime rate (higher = safer)
case
when cr.crime_rate_per_100k is not null
then 100 - percent_rank() over (
partition by ny.year
order by cr.crime_rate_per_100k
) * 100
else null
end as safety_score,
-- Affordability score: inverse of rent-to-income ratio
-- Using CMA-level income since neighbourhood-level not available
case
when cma.median_household_income > 0 and r.avg_rent_standard > 0
then 100 - percent_rank() over (
partition by ny.year
order by (r.avg_rent_standard * 12 / cma.median_household_income)
) * 100
else null
end as affordability_score,
-- Raw metrics
cr.crime_rate_per_100k,
case
when cma.median_household_income > 0 and r.avg_rent_standard > 0
then round((r.avg_rent_standard * 12 / cma.median_household_income) * 100, 2)
else null
end as rent_to_income_pct,
r.avg_rent_standard as avg_rent_2bed,
r.vacancy_rate
from neighbourhood_years ny
left join census_mapped cm
on ny.neighbourhood_id = cm.neighbourhood_id
and ny.year = cm.year
left join cma_census cma
on ny.year = cma.year
left join crime cr
on ny.neighbourhood_id = cr.neighbourhood_id
and ny.year = cr.year
left join rentals r
on ny.year = r.year
),
final as (
select
neighbourhood_id,
neighbourhood_name,
geometry,
year,
population,
median_household_income,
-- Component scores (0-100)
round(safety_score::numeric, 1) as safety_score,
round(affordability_score::numeric, 1) as affordability_score,
-- TODO: Replace with actual amenity score when fact_amenities is populated
-- Currently uses neutral placeholder (50.0) which affects livability_score accuracy
50.0 as amenity_score,
-- Composite livability score: safety (40%), affordability (40%), amenities (20%)
round(
(coalesce(safety_score, 50) * 0.40 +
coalesce(affordability_score, 50) * 0.40 +
50 * 0.20)::numeric,
1
) as livability_score,
-- Raw metrics
crime_rate_per_100k,
rent_to_income_pct,
avg_rent_2bed,
vacancy_rate,
null::numeric as total_amenities_per_1000
from scored
)
select * from final

View File

@@ -0,0 +1,33 @@
version: 2
models:
- name: stg_dimensions__time
description: "Staged time dimension - shared across all projects"
columns:
- name: date_key
description: "Primary key (YYYYMM format)"
data_tests:
- unique
- not_null
- name: full_date
description: "First day of month"
data_tests:
- not_null
- name: year
description: "Calendar year"
data_tests:
- not_null
- name: month
description: "Month number (1-12)"
data_tests:
- not_null
- name: quarter
description: "Quarter (1-4)"
data_tests:
- not_null
- name: month_name
description: "Month name"
data_tests:
- not_null
- name: is_month_start
description: "Always true (monthly grain)"

View File

@@ -0,0 +1,25 @@
version: 2
sources:
- name: shared
description: "Shared dimension tables used across all dashboards"
database: portfolio
schema: public
tables:
- name: dim_time
description: "Time dimension (monthly grain) - shared across all projects"
columns:
- name: date_key
description: "Primary key (YYYYMM format)"
- name: full_date
description: "First day of month"
- name: year
description: "Calendar year"
- name: month
description: "Month number (1-12)"
- name: quarter
description: "Quarter (1-4)"
- name: month_name
description: "Month name"
- name: is_month_start
description: "Always true (monthly grain)"

View File

@@ -1,9 +1,10 @@
-- Staged time dimension
-- Source: dim_time table
-- Source: shared.dim_time table
-- Grain: One row per month
-- Note: Shared dimension used across all dashboard projects
with source as (
select * from {{ source('toronto_housing', 'dim_time') }}
select * from {{ source('shared', 'dim_time') }}
),
staged as (

View File

@@ -1,18 +0,0 @@
-- Staged CMHC zone dimension
-- Source: dim_cmhc_zone table
-- Grain: One row per zone
with source as (
select * from {{ source('toronto_housing', 'dim_cmhc_zone') }}
),
staged as (
select
zone_key,
zone_code,
zone_name,
geometry
from source
)
select * from staged

View File

@@ -1,10 +1,10 @@
version: 2
sources:
- name: toronto_housing
description: "Toronto housing data loaded from CMHC and City of Toronto sources"
- name: toronto
description: "Toronto data loaded from CMHC and City of Toronto sources"
database: portfolio
schema: public
schema: raw_toronto
tables:
- name: fact_rentals
description: "CMHC annual rental survey data by zone and bedroom type"
@@ -16,12 +16,6 @@ sources:
- name: zone_key
description: "Foreign key to dim_cmhc_zone"
- name: dim_time
description: "Time dimension (monthly grain)"
columns:
- name: date_key
description: "Primary key (YYYYMMDD format)"
- name: dim_cmhc_zone
description: "CMHC zone dimension with geometry"
columns:

View File

@@ -6,25 +6,16 @@ models:
columns:
- name: rental_id
description: "Unique identifier for rental record"
tests:
data_tests:
- unique
- not_null
- name: date_key
description: "Date dimension key (YYYYMMDD)"
tests:
data_tests:
- not_null
- name: zone_key
description: "CMHC zone dimension key"
tests:
- not_null
- name: stg_dimensions__time
description: "Staged time dimension"
columns:
- name: date_key
description: "Date dimension key (YYYYMMDD)"
tests:
- unique
data_tests:
- not_null
- name: stg_dimensions__cmhc_zones
@@ -32,12 +23,12 @@ models:
columns:
- name: zone_key
description: "Zone dimension key"
tests:
data_tests:
- unique
- not_null
- name: zone_code
description: "CMHC zone code"
tests:
data_tests:
- unique
- not_null
@@ -46,12 +37,12 @@ models:
columns:
- name: neighbourhood_id
description: "Neighbourhood primary key"
tests:
data_tests:
- unique
- not_null
- name: neighbourhood_name
description: "Official neighbourhood name"
tests:
data_tests:
- not_null
- name: geometry
description: "PostGIS geometry (POLYGON)"
@@ -61,16 +52,16 @@ models:
columns:
- name: census_id
description: "Census record identifier"
tests:
data_tests:
- unique
- not_null
- name: neighbourhood_id
description: "Neighbourhood foreign key"
tests:
data_tests:
- not_null
- name: census_year
description: "Census year (2016, 2021)"
tests:
data_tests:
- not_null
- name: stg_toronto__crime
@@ -78,16 +69,16 @@ models:
columns:
- name: crime_id
description: "Crime record identifier"
tests:
data_tests:
- unique
- not_null
- name: neighbourhood_id
description: "Neighbourhood foreign key"
tests:
data_tests:
- not_null
- name: crime_type
description: "Type of crime"
tests:
data_tests:
- not_null
- name: stg_toronto__amenities
@@ -95,16 +86,16 @@ models:
columns:
- name: amenity_id
description: "Amenity record identifier"
tests:
data_tests:
- unique
- not_null
- name: neighbourhood_id
description: "Neighbourhood foreign key"
tests:
data_tests:
- not_null
- name: amenity_type
description: "Type of amenity"
tests:
data_tests:
- not_null
- name: stg_cmhc__zone_crosswalk
@@ -112,18 +103,18 @@ models:
columns:
- name: crosswalk_id
description: "Crosswalk record identifier"
tests:
data_tests:
- unique
- not_null
- name: cmhc_zone_code
description: "CMHC zone code"
tests:
data_tests:
- not_null
- name: neighbourhood_id
description: "Neighbourhood foreign key"
tests:
data_tests:
- not_null
- name: area_weight
description: "Proportional area weight (0-1)"
tests:
data_tests:
- not_null

View File

@@ -1,9 +1,13 @@
-- Staged CMHC rental market survey data
-- Source: fact_rentals table loaded from CMHC CSV exports
-- Source: fact_rentals table loaded from CMHC/StatCan
-- Grain: One row per zone per bedroom type per survey year
with source as (
select * from {{ source('toronto_housing', 'fact_rentals') }}
select
f.*,
t.year as survey_year
from {{ source('toronto', 'fact_rentals') }} f
join {{ source('shared', 'dim_time') }} t on f.date_key = t.date_key
),
staged as (
@@ -11,6 +15,7 @@ staged as (
id as rental_id,
date_key,
zone_key,
survey_year as year,
bedroom_type,
universe as rental_universe,
avg_rent,

View File

@@ -3,7 +3,7 @@
-- Grain: One row per zone-neighbourhood intersection
with source as (
select * from {{ source('toronto_housing', 'bridge_cmhc_neighbourhood') }}
select * from {{ source('toronto', 'bridge_cmhc_neighbourhood') }}
),
staged as (

View File

@@ -0,0 +1,19 @@
-- Staged CMHC zone dimension
-- Source: dim_cmhc_zone table
-- Grain: One row per zone
with source as (
select * from {{ source('toronto', 'dim_cmhc_zone') }}
),
staged as (
select
zone_key,
zone_code,
zone_name
-- geometry column excluded: CMHC does not provide zone boundaries
-- Spatial analysis uses dim_neighbourhood geometry instead
from source
)
select * from staged

View File

@@ -3,7 +3,7 @@
-- Grain: One row per neighbourhood per amenity type per year
with source as (
select * from {{ source('toronto_housing', 'fact_amenities') }}
select * from {{ source('toronto', 'fact_amenities') }}
),
staged as (

View File

@@ -3,7 +3,7 @@
-- Grain: One row per neighbourhood per census year
with source as (
select * from {{ source('toronto_housing', 'fact_census') }}
select * from {{ source('toronto', 'fact_census') }}
),
staged as (

View File

@@ -3,7 +3,7 @@
-- Grain: One row per neighbourhood per year per crime type
with source as (
select * from {{ source('toronto_housing', 'fact_crime') }}
select * from {{ source('toronto', 'fact_crime') }}
),
staged as (

View File

@@ -3,7 +3,7 @@
-- Grain: One row per neighbourhood (158 total)
with source as (
select * from {{ source('toronto_housing', 'dim_neighbourhood') }}
select * from {{ source('toronto', 'dim_neighbourhood') }}
),
staged as (

View File

@@ -1,4 +1,4 @@
toronto_housing:
portfolio:
target: dev
outputs:
dev:

View File

@@ -1,6 +1,6 @@
services:
db:
image: postgis/postgis:16-3.4
image: ${POSTGIS_IMAGE:-postgis/postgis:16-3.4}
container_name: portfolio-db
restart: unless-stopped
ports:

View File

@@ -50,9 +50,11 @@ The app runs at `http://localhost:8050`.
```bash
make test # Run tests
make test-cov # Run tests with coverage
make lint # Check code style
make format # Auto-format code
make ci # Run all checks (lint + test)
make typecheck # Run mypy type checker
make ci # Run all checks (lint, typecheck, test)
make dbt-run # Run dbt transformations
make dbt-test # Run dbt tests
```
@@ -247,13 +249,23 @@ def layout(slug: str = "") -> dmc.Container:
To add the page to the sidebar, edit `portfolio_app/components/sidebar.py`:
```python
NAV_ITEMS = [
{"label": "Home", "href": "/", "icon": "tabler:home"},
{"label": "Your Page", "href": "/your-page", "icon": "tabler:star"},
# For main pages (Home, About, Blog, etc.)
NAV_ITEMS_MAIN = [
{"path": "/", "icon": "tabler:home", "label": "Home"},
{"path": "/your-page", "icon": "tabler:star", "label": "Your Page"},
# ...
]
# For project/dashboard pages
NAV_ITEMS_PROJECTS = [
{"path": "/projects", "icon": "tabler:folder", "label": "Projects"},
{"path": "/your-dashboard", "icon": "tabler:chart-bar", "label": "Your Dashboard"},
# ...
]
```
The sidebar uses icon buttons with tooltips. Each item needs `path`, `icon` (Tabler icon name), and `label` (tooltip text).
### URL Routing Summary
| File Location | URL |
@@ -278,7 +290,7 @@ Dashboard tabs are in `portfolio_app/pages/toronto/tabs/`.
import dash_mantine_components as dmc
from portfolio_app.figures.choropleth import create_choropleth
from portfolio_app.figures.toronto.choropleth import create_choropleth
from portfolio_app.toronto.demo_data import get_demo_data
@@ -327,13 +339,13 @@ dmc.TabsPanel(create_your_tab_layout(), value="your-tab"),
## Creating Figure Factories
Figure factories are in `portfolio_app/figures/`. They create reusable Plotly figures.
Figure factories are organized by dashboard domain under `portfolio_app/figures/{domain}/`.
### Pattern
```python
# figures/your_chart.py
"""Your chart type factory."""
# figures/toronto/your_chart.py
"""Your chart type factory for Toronto dashboard."""
import plotly.express as px
import plotly.graph_objects as go
@@ -370,7 +382,7 @@ def create_your_chart(
### Export from `__init__.py`
```python
# figures/__init__.py
# figures/toronto/__init__.py
from .your_chart import create_your_chart
__all__ = [
@@ -379,6 +391,14 @@ __all__ = [
]
```
### Importing Figure Factories
```python
# In callbacks or tabs
from portfolio_app.figures.toronto import create_choropleth_figure
from portfolio_app.figures.toronto.bar_charts import create_ranking_bar
```
---
## Branch Workflow

335
docs/DATABASE_SCHEMA.md Normal file
View File

@@ -0,0 +1,335 @@
# Database Schema
This document describes the PostgreSQL/PostGIS database schema for the Toronto Neighbourhood Dashboard.
## Entity Relationship Diagram
```mermaid
erDiagram
dim_time {
int date_key PK
date full_date UK
int year
int month
int quarter
string month_name
bool is_month_start
}
dim_cmhc_zone {
int zone_key PK
string zone_code UK
string zone_name
geometry geometry
}
dim_neighbourhood {
int neighbourhood_id PK
string name
geometry geometry
int population
numeric land_area_sqkm
numeric pop_density_per_sqkm
numeric pct_bachelors_or_higher
numeric median_household_income
numeric pct_owner_occupied
numeric pct_renter_occupied
int census_year
}
dim_policy_event {
int event_id PK
date event_date
date effective_date
string level
string category
string title
text description
string expected_direction
string source_url
string confidence
}
fact_rentals {
int id PK
int date_key FK
int zone_key FK
string bedroom_type
int universe
numeric avg_rent
numeric median_rent
numeric vacancy_rate
numeric availability_rate
numeric turnover_rate
numeric rent_change_pct
string reliability_code
}
fact_census {
int id PK
int neighbourhood_id FK
int census_year
int population
numeric population_density
numeric median_household_income
numeric average_household_income
numeric unemployment_rate
numeric pct_bachelors_or_higher
numeric pct_owner_occupied
numeric pct_renter_occupied
numeric median_age
numeric average_dwelling_value
}
fact_crime {
int id PK
int neighbourhood_id FK
int year
string crime_type
int count
numeric rate_per_100k
}
fact_amenities {
int id PK
int neighbourhood_id FK
string amenity_type
int count
int year
}
bridge_cmhc_neighbourhood {
int id PK
string cmhc_zone_code FK
int neighbourhood_id FK
numeric weight
}
dim_time ||--o{ fact_rentals : "date_key"
dim_cmhc_zone ||--o{ fact_rentals : "zone_key"
dim_neighbourhood ||--o{ fact_census : "neighbourhood_id"
dim_neighbourhood ||--o{ fact_crime : "neighbourhood_id"
dim_neighbourhood ||--o{ fact_amenities : "neighbourhood_id"
dim_cmhc_zone ||--o{ bridge_cmhc_neighbourhood : "zone_code"
dim_neighbourhood ||--o{ bridge_cmhc_neighbourhood : "neighbourhood_id"
```
## Schema Layers
### Database Schemas
| Schema | Purpose | Managed By |
|--------|---------|------------|
| `public` | Shared dimensions (dim_time) | SQLAlchemy |
| `raw_toronto` | Toronto dimension and fact tables | SQLAlchemy |
| `stg_toronto` | Toronto staging models | dbt |
| `int_toronto` | Toronto intermediate models | dbt |
| `mart_toronto` | Toronto analytical tables | dbt |
### Raw Toronto Schema (raw_toronto)
Toronto-specific tables loaded by SQLAlchemy:
| Table | Source | Description |
|-------|--------|-------------|
| `dim_neighbourhood` | City of Toronto API | 158 neighbourhood boundaries |
| `dim_cmhc_zone` | CMHC | ~20 rental market zones |
| `dim_policy_event` | Manual | Policy events for annotation |
| `fact_census` | City of Toronto API | Census profile data |
| `fact_crime` | Toronto Police API | Crime statistics |
| `fact_amenities` | City of Toronto API | Amenity counts |
| `fact_rentals` | CMHC Data Files | Rental market survey data |
| `bridge_cmhc_neighbourhood` | Computed | Zone-neighbourhood mapping |
### Public Schema
Shared dimensions used across all projects:
| Table | Description |
|-------|-------------|
| `dim_time` | Time dimension (monthly grain) |
### Staging Schema - stg_toronto (dbt)
Staging models provide 1:1 cleaned representations of source data:
| Model | Source Table | Purpose |
|-------|-------------|---------|
| `stg_toronto__neighbourhoods` | raw.neighbourhoods | Cleaned boundaries with standardized names |
| `stg_toronto__census` | raw.census_profiles | Typed census metrics |
| `stg_cmhc__rentals` | raw.cmhc_rentals | Validated rental data |
| `stg_toronto__crime` | raw.crime_data | Standardized crime categories |
| `stg_toronto__amenities` | raw.amenities | Typed amenity counts |
| `stg_dimensions__time` | generated | Time dimension |
| `stg_dimensions__cmhc_zones` | raw.cmhc_zones | CMHC zone boundaries |
| `stg_cmhc__zone_crosswalk` | raw.crosswalk | Zone-neighbourhood mapping |
### Marts Schema - mart_toronto (dbt)
Analytical tables ready for dashboard consumption:
| Model | Grain | Purpose |
|-------|-------|---------|
| `mart_neighbourhood_overview` | neighbourhood | Composite livability scores |
| `mart_neighbourhood_housing` | neighbourhood | Housing and rent metrics |
| `mart_neighbourhood_safety` | neighbourhood × year | Crime rate calculations |
| `mart_neighbourhood_demographics` | neighbourhood | Income, age, population metrics |
| `mart_neighbourhood_amenities` | neighbourhood | Amenity accessibility scores |
| `mart_toronto_rentals` | zone × month | Time-series rental analysis |
## Table Details
### Dimension Tables
#### dim_time
Time dimension for date-based analysis. Grain: one row per month.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| date_key | INTEGER | PK | Surrogate key (YYYYMM format) |
| full_date | DATE | UNIQUE, NOT NULL | First day of month |
| year | INTEGER | NOT NULL | Calendar year |
| month | INTEGER | NOT NULL | Month number (1-12) |
| quarter | INTEGER | NOT NULL | Quarter (1-4) |
| month_name | VARCHAR(20) | NOT NULL | Month name |
| is_month_start | BOOLEAN | DEFAULT TRUE | Always true (monthly grain) |
#### dim_cmhc_zone
CMHC rental market zones (~20 zones covering Toronto).
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| zone_key | INTEGER | PK, AUTO | Surrogate key |
| zone_code | VARCHAR(10) | UNIQUE, NOT NULL | CMHC zone identifier |
| zone_name | VARCHAR(100) | NOT NULL | Zone display name |
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS zone boundary |
#### dim_neighbourhood
Toronto's 158 official neighbourhoods.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| neighbourhood_id | INTEGER | PK | City-assigned ID |
| name | VARCHAR(100) | NOT NULL | Neighbourhood name |
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS boundary |
| population | INTEGER | | Total population |
| land_area_sqkm | NUMERIC(10,4) | | Area in km² |
| pop_density_per_sqkm | NUMERIC(10,2) | | Population density |
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
| median_household_income | NUMERIC(12,2) | | Median income |
| pct_owner_occupied | NUMERIC(5,2) | | Owner occupancy rate |
| pct_renter_occupied | NUMERIC(5,2) | | Renter occupancy rate |
| census_year | INTEGER | DEFAULT 2021 | Census reference year |
#### dim_policy_event
Policy events for time-series annotation (rent control, interest rates, etc.).
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| event_id | INTEGER | PK, AUTO | Surrogate key |
| event_date | DATE | NOT NULL | Announcement date |
| effective_date | DATE | | Implementation date |
| level | VARCHAR(20) | NOT NULL | federal/provincial/municipal |
| category | VARCHAR(20) | NOT NULL | monetary/tax/regulatory/supply/economic |
| title | VARCHAR(200) | NOT NULL | Event title |
| description | TEXT | | Detailed description |
| expected_direction | VARCHAR(10) | NOT NULL | bearish/bullish/neutral |
| source_url | VARCHAR(500) | | Reference link |
| confidence | VARCHAR(10) | DEFAULT 'medium' | high/medium/low |
### Fact Tables
#### fact_rentals
CMHC rental market survey data. Grain: zone × bedroom type × survey date.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PK, AUTO | Surrogate key |
| date_key | INTEGER | FK → dim_time | Survey date reference |
| zone_key | INTEGER | FK → dim_cmhc_zone | CMHC zone reference |
| bedroom_type | VARCHAR(20) | NOT NULL | bachelor/1-bed/2-bed/3+bed/total |
| universe | INTEGER | | Total rental units |
| avg_rent | NUMERIC(10,2) | | Average rent |
| median_rent | NUMERIC(10,2) | | Median rent |
| vacancy_rate | NUMERIC(5,2) | | Vacancy percentage |
| availability_rate | NUMERIC(5,2) | | Availability percentage |
| turnover_rate | NUMERIC(5,2) | | Turnover percentage |
| rent_change_pct | NUMERIC(5,2) | | Year-over-year change |
| reliability_code | VARCHAR(2) | | CMHC data quality code |
#### fact_census
Census statistics. Grain: neighbourhood × census year.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PK, AUTO | Surrogate key |
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
| census_year | INTEGER | NOT NULL | 2016, 2021, etc. |
| population | INTEGER | | Total population |
| population_density | NUMERIC(10,2) | | People per km² |
| median_household_income | NUMERIC(12,2) | | Median income |
| average_household_income | NUMERIC(12,2) | | Average income |
| unemployment_rate | NUMERIC(5,2) | | Unemployment % |
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
| pct_owner_occupied | NUMERIC(5,2) | | Owner rate |
| pct_renter_occupied | NUMERIC(5,2) | | Renter rate |
| median_age | NUMERIC(5,2) | | Median resident age |
| average_dwelling_value | NUMERIC(12,2) | | Average home value |
#### fact_crime
Crime statistics. Grain: neighbourhood × year × crime type.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PK, AUTO | Surrogate key |
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
| year | INTEGER | NOT NULL | Calendar year |
| crime_type | VARCHAR(50) | NOT NULL | Crime category |
| count | INTEGER | NOT NULL | Number of incidents |
| rate_per_100k | NUMERIC(10,2) | | Rate per 100k population |
#### fact_amenities
Amenity counts. Grain: neighbourhood × amenity type × year.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PK, AUTO | Surrogate key |
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
| amenity_type | VARCHAR(50) | NOT NULL | parks/schools/transit/etc. |
| count | INTEGER | NOT NULL | Number of amenities |
| year | INTEGER | NOT NULL | Reference year |
### Bridge Tables
#### bridge_cmhc_neighbourhood
Maps CMHC zones to neighbourhoods with area-based weights for data disaggregation.
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PK, AUTO | Surrogate key |
| cmhc_zone_code | VARCHAR(10) | FK → dim_cmhc_zone | Zone reference |
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
| weight | NUMERIC(5,4) | NOT NULL | Proportional weight (0-1) |
## Indexes
| Table | Index | Columns | Purpose |
|-------|-------|---------|---------|
| fact_rentals | ix_fact_rentals_date_zone | date_key, zone_key | Time-series queries |
| fact_census | ix_fact_census_neighbourhood_year | neighbourhood_id, census_year | Census lookups |
| fact_crime | ix_fact_crime_neighbourhood_year | neighbourhood_id, year | Crime trends |
| fact_crime | ix_fact_crime_type | crime_type | Crime filtering |
| fact_amenities | ix_fact_amenities_neighbourhood_year | neighbourhood_id, year | Amenity queries |
| fact_amenities | ix_fact_amenities_type | amenity_type | Amenity filtering |
| bridge_cmhc_neighbourhood | ix_bridge_cmhc_zone | cmhc_zone_code | Zone lookups |
| bridge_cmhc_neighbourhood | ix_bridge_neighbourhood | neighbourhood_id | Neighbourhood lookups |
## PostGIS Extensions
The database requires PostGIS for geospatial operations:
```sql
CREATE EXTENSION IF NOT EXISTS postgis;
```
All geometry columns use SRID 4326 (WGS84) for compatibility with web mapping libraries.

View File

@@ -76,7 +76,8 @@ portfolio_app/
├── components/ # Shared UI components
├── content/blog/ # Markdown blog articles
├── errors/ # Exception handling
├── figures/ # Plotly figure factories
├── figures/
│ └── toronto/ # Toronto figure factories
├── pages/
│ ├── home.py
│ ├── about.py
@@ -91,15 +92,26 @@ portfolio_app/
│ ├── dashboard.py
│ ├── methodology.py
│ ├── tabs/ # 5 tab layouts
│ └── callbacks/ # Dashboard interactions
│ └── callbacks/ # Dashboard interactions (map_callbacks, chart_callbacks, selection_callbacks)
├── toronto/ # Data logic
│ ├── parsers/ # API extraction
│ ├── loaders/ # Database operations
│ ├── parsers/ # API extraction (geo, toronto_open_data, toronto_police, cmhc)
│ ├── loaders/ # Database operations (base, cmhc, cmhc_crosswalk)
│ ├── schemas/ # Pydantic models
│ ├── models/ # SQLAlchemy ORM
│ ├── models/ # SQLAlchemy ORM (raw_toronto schema)
│ ├── services/ # Query functions (neighbourhood_service, geometry_service)
│ └── demo_data.py # Sample data
└── utils/
└── markdown_loader.py # Blog article loading
dbt/ # dbt project: portfolio
├── models/
│ ├── shared/ # Cross-domain dimensions
│ ├── staging/toronto/ # Toronto staging models
│ ├── intermediate/toronto/ # Toronto intermediate models
│ └── marts/toronto/ # Toronto mart tables
notebooks/
└── toronto/ # Toronto documentation notebooks
```
---
@@ -143,10 +155,20 @@ CMHC Zones (~20) ← Rental data (Census Tract aligned)
| `fact_rentals` | Fact | Rental data by CMHC zone |
| `fact_amenities` | Fact | Amenity counts by neighbourhood |
### dbt Layers
### dbt Project: `portfolio`
**Model Structure:**
```
dbt/models/
├── shared/ # Cross-domain dimensions (stg_dimensions__time)
├── staging/toronto/ # Toronto staging models
├── intermediate/toronto/ # Toronto intermediate models
└── marts/toronto/ # Toronto mart tables
```
| Layer | Naming | Example |
|-------|--------|---------|
| Shared | `stg_dimensions__*` | `stg_dimensions__time` |
| Staging | `stg_{source}__{entity}` | `stg_toronto__neighbourhoods` |
| Intermediate | `int_{domain}__{transform}` | `int_neighbourhood__demographics` |
| Marts | `mart_{domain}` | `mart_neighbourhood_overview` |
@@ -241,16 +263,25 @@ LOG_LEVEL=INFO
| Target | Purpose |
|--------|---------|
| `setup` | Install deps, create .env, init pre-commit |
| `docker-up` | Start PostgreSQL + PostGIS |
| `docker-up` | Start PostgreSQL + PostGIS (auto-detects x86/ARM) |
| `docker-down` | Stop containers |
| `docker-logs` | View container logs |
| `db-init` | Initialize database schema |
| `db-reset` | Drop and recreate database (DESTRUCTIVE) |
| `load-data` | Load Toronto data from APIs, seed dev data |
| `load-toronto-only` | Load Toronto data without dbt or seeding |
| `seed-data` | Seed sample development data |
| `run` | Start Dash dev server |
| `test` | Run pytest |
| `dbt-run` | Run dbt models |
| `dbt-test` | Run dbt tests |
| `test-cov` | Run pytest with coverage |
| `lint` | Run ruff linter |
| `format` | Run ruff formatter |
| `ci` | Run all checks |
| `typecheck` | Run mypy type checker |
| `ci` | Run all checks (lint, typecheck, test) |
| `dbt-run` | Run dbt models |
| `dbt-test` | Run dbt tests |
| `dbt-docs` | Generate and serve dbt documentation |
| `clean` | Remove build artifacts and caches |
---

View File

@@ -10,6 +10,7 @@ This folder contains lessons learned from sprints and development work. These le
| Date | Sprint/Phase | Title | Tags |
|------|--------------|-------|------|
| 2026-02-01 | Sprint 10 | [Formspree Integration with Dash Callbacks](./sprint-10-formspree-dash-integration.md) | formspree, dash, callbacks, forms, spam-protection, honeypot, ajax |
| 2026-01-17 | Sprint 9 | [Gitea Labels API Requires Org Context](./sprint-9-gitea-labels-user-repos.md) | gitea, mcp, api, labels, projman, configuration |
| 2026-01-17 | Sprint 9 | [Always Read CLAUDE.md Before Asking Questions](./sprint-9-read-claude-md-first.md) | projman, claude-code, context, documentation, workflow |
| 2026-01-17 | Sprint 9-10 | [Graceful Error Handling in Service Layers](./sprint-9-10-graceful-error-handling.md) | python, postgresql, error-handling, dash, graceful-degradation, arm64 |

View File

@@ -0,0 +1,70 @@
# Sprint 10 - Formspree Integration with Dash Callbacks
## Context
Implementing a contact form on a Dash portfolio site that submits to Formspree, a third-party form handling service.
## Insights
### Formspree AJAX Submission
Formspree supports AJAX submissions (no page redirect) when you:
1. POST with `Content-Type: application/json`
2. Include `Accept: application/json` header
3. Send form data as JSON body
This returns a JSON response instead of redirecting to a thank-you page, which is ideal for single-page Dash applications.
### Dash Multi-Output Callbacks for Forms
When handling form submission with validation and feedback, use a multi-output callback pattern:
```python
@callback(
Output("feedback-container", "children"), # Success/error alert
Output("submit-button", "loading"), # Button loading state
Output("field-1", "value"), # Clear on success
Output("field-2", "value"), # Clear on success
Output("field-1", "error"), # Field-level errors
Output("field-2", "error"), # Field-level errors
Input("submit-button", "n_clicks"),
State("field-1", "value"),
State("field-2", "value"),
prevent_initial_call=True,
)
```
Use `no_update` for outputs you don't want to change (e.g., keep form values on validation error, only clear on success).
### Honeypot Spam Protection
Simple and effective bot protection without CAPTCHA:
1. Add a hidden text input field (CSS: `position: absolute; left: -9999px`)
2. Set `tabIndex=-1` and `autoComplete="off"` to prevent accidental filling
3. In callback, check if honeypot has value - if yes, it's a bot
4. For bots: return fake success (don't reveal detection)
5. For humans: proceed with real submission
Formspree also accepts `_gotcha` as a honeypot field name in the JSON payload.
## Code Pattern
```python
# Honeypot check - bots fill hidden fields
if honeypot_value:
# Fake success - don't let bots know they were caught
return (_create_success_alert(), False, "", "", None, None)
# Real submission for humans
response = requests.post(
FORMSPREE_ENDPOINT,
json=form_data,
headers={"Accept": "application/json", "Content-Type": "application/json"},
timeout=10,
)
```
## Prevention/Best Practices
- Always use `timeout` parameter with `requests.post()` to avoid hanging
- Wrap external API calls in try/except for network errors
- Return user-friendly error messages, not technical details
- Use DMC's `required=True` and `error` props for form validation feedback
## Tags
formspree, dash, callbacks, forms, spam-protection, honeypot, ajax, python, requests, validation

View File

@@ -0,0 +1,265 @@
# Runbook: Adding a New Dashboard
This runbook describes how to add a new data dashboard to the portfolio application.
## Prerequisites
- [ ] Data sources identified and accessible
- [ ] Database schema designed
- [ ] Basic Dash/Plotly familiarity
## Directory Structure
Create the following structure:
### Application Code (`portfolio_app/`)
```
portfolio_app/
├── pages/
│ └── {dashboard_name}/
│ ├── dashboard.py # Main layout with tabs
│ ├── methodology.py # Data sources and methods page
│ ├── tabs/
│ │ ├── __init__.py
│ │ ├── overview.py # Overview tab layout
│ │ └── ... # Additional tab layouts
│ └── callbacks/
│ ├── __init__.py
│ └── ... # Callback modules
├── {dashboard_name}/ # Data logic (outside pages/)
│ ├── __init__.py
│ ├── parsers/ # API/CSV extraction
│ │ └── __init__.py
│ ├── loaders/ # Database operations
│ │ └── __init__.py
│ ├── schemas/ # Pydantic models
│ │ └── __init__.py
│ └── models/ # SQLAlchemy ORM (schema: raw_{dashboard_name})
│ └── __init__.py
└── figures/
└── {dashboard_name}/ # Figure factories for this dashboard
├── __init__.py
└── ... # Chart modules
```
### dbt Models (`dbt/models/`)
```
dbt/models/
├── staging/
│ └── {dashboard_name}/ # Staging models
│ ├── _sources.yml # Source definitions (schema: raw_{dashboard_name})
│ ├── _staging.yml # Model tests/docs
│ └── stg_*.sql # Staging models
├── intermediate/
│ └── {dashboard_name}/ # Intermediate models
│ ├── _intermediate.yml
│ └── int_*.sql
└── marts/
└── {dashboard_name}/ # Mart tables
├── _marts.yml
└── mart_*.sql
```
### Documentation (`notebooks/`)
```
notebooks/
└── {dashboard_name}/ # Domain subdirectories
├── overview/
├── ...
```
## Step-by-Step Checklist
### 1. Data Layer
- [ ] Create Pydantic schemas in `{dashboard_name}/schemas/`
- [ ] Create SQLAlchemy models in `{dashboard_name}/models/`
- [ ] Create parsers in `{dashboard_name}/parsers/`
- [ ] Create loaders in `{dashboard_name}/loaders/`
- [ ] Add database migrations if needed
### 2. Database Schema
- [ ] Define schema constant in models (e.g., `RAW_FOOTBALL_SCHEMA = "raw_football"`)
- [ ] Add `__table_args__ = {"schema": RAW_FOOTBALL_SCHEMA}` to all models
- [ ] Update `scripts/db/init_schema.py` to create the new schema
### 3. dbt Models
Create dbt models in `dbt/models/`:
- [ ] `staging/{dashboard_name}/_sources.yml` - Source definitions pointing to `raw_{dashboard_name}` schema
- [ ] `staging/{dashboard_name}/stg_{source}__{entity}.sql` - Raw data cleaning
- [ ] `intermediate/{dashboard_name}/int_{domain}__{transform}.sql` - Business logic
- [ ] `marts/{dashboard_name}/mart_{domain}.sql` - Final analytical tables
Update `dbt/dbt_project.yml` with new subdirectory config:
```yaml
models:
portfolio:
staging:
{dashboard_name}:
+materialized: view
+schema: stg_{dashboard_name}
intermediate:
{dashboard_name}:
+materialized: view
+schema: int_{dashboard_name}
marts:
{dashboard_name}:
+materialized: table
+schema: mart_{dashboard_name}
```
Follow naming conventions:
- Staging: `stg_{source}__{entity}`
- Intermediate: `int_{domain}__{transform}`
- Marts: `mart_{domain}`
### 4. Visualization Layer
- [ ] Create figure factories in `figures/{dashboard_name}/`
- [ ] Create `figures/{dashboard_name}/__init__.py` with exports
- [ ] Follow the factory pattern: `create_{chart_type}_figure(data, **kwargs)`
Import pattern:
```python
from portfolio_app.figures.{dashboard_name} import create_choropleth_figure
```
### 4. Dashboard Pages
#### Main Dashboard (`pages/{dashboard_name}/dashboard.py`)
```python
import dash
from dash import html, dcc
import dash_mantine_components as dmc
dash.register_page(
__name__,
path="/{dashboard_name}",
title="{Dashboard Title}",
description="{Description}"
)
def layout():
return dmc.Container([
# Header
dmc.Title("{Dashboard Title}", order=1),
# Tabs
dmc.Tabs([
dmc.TabsList([
dmc.TabsTab("Overview", value="overview"),
# Add more tabs
]),
dmc.TabsPanel(overview_tab(), value="overview"),
# Add more panels
], value="overview"),
])
```
#### Tab Layouts (`pages/{dashboard_name}/tabs/`)
- [ ] Create one file per tab
- [ ] Export layout function from each
#### Callbacks (`pages/{dashboard_name}/callbacks/`)
- [ ] Create callback modules for interactivity
- [ ] Import and register in dashboard.py
### 5. Navigation
Add to sidebar in `components/sidebar.py`:
```python
dmc.NavLink(
label="{Dashboard Name}",
href="/{dashboard_name}",
icon=DashIconify(icon="..."),
)
```
### 6. Documentation
- [ ] Create methodology page (`pages/{dashboard_name}/methodology.py`)
- [ ] Document data sources
- [ ] Document transformation logic
- [ ] Add notebooks to `notebooks/{dashboard_name}/` if needed
### 7. Testing
- [ ] Add unit tests for parsers
- [ ] Add unit tests for loaders
- [ ] Add integration tests for callbacks
- [ ] Run `make test`
### 8. Final Verification
- [ ] All pages render without errors
- [ ] All callbacks respond correctly
- [ ] Data loads successfully
- [ ] dbt models run cleanly (`make dbt-run`)
- [ ] Linting passes (`make lint`)
- [ ] Tests pass (`make test`)
## Example: Toronto Dashboard
Reference implementation: `portfolio_app/pages/toronto/`
Key files:
- `dashboard.py` - Main layout with 5 tabs
- `tabs/overview.py` - Livability scores, scatter plots
- `callbacks/map_callbacks.py` - Choropleth interactions
- `toronto/models/dimensions.py` - Dimension tables
- `toronto/models/facts.py` - Fact tables
## Common Patterns
### Figure Factories
```python
# figures/choropleth.py
def create_choropleth_figure(
gdf: gpd.GeoDataFrame,
value_column: str,
title: str,
**kwargs
) -> go.Figure:
...
```
### Callbacks
```python
# callbacks/map_callbacks.py
@callback(
Output("neighbourhood-details", "children"),
Input("choropleth-map", "clickData"),
)
def update_details(click_data):
...
```
### Data Loading
```python
# {dashboard_name}/loaders/load.py
def load_data(session: Session) -> None:
# Parse from source
records = parse_source_data()
# Validate with Pydantic
validated = [Schema(**r) for r in records]
# Load to database
for record in validated:
session.add(Model(**record.model_dump()))
session.commit()
```

232
docs/runbooks/deployment.md Normal file
View File

@@ -0,0 +1,232 @@
# Runbook: Deployment
This runbook covers deployment procedures for the Analytics Portfolio application.
## Environments
| Environment | Branch | Server | URL |
|-------------|--------|--------|-----|
| Development | `development` | Local | http://localhost:8050 |
| Staging | `staging` | Homelab (hotserv) | Internal |
| Production | `main` | Bandit Labs VPS | https://leodata.science |
## CI/CD Pipeline
### Automatic Deployment
Deployments are triggered automatically via Gitea Actions:
1. **Push to `staging`** → Deploys to staging server
2. **Push to `main`** → Deploys to production server
### Workflow Files
- `.gitea/workflows/ci.yml` - Runs linting and tests on all branches
- `.gitea/workflows/deploy-staging.yml` - Staging deployment
- `.gitea/workflows/deploy-production.yml` - Production deployment
### Required Secrets
Configure these in Gitea repository settings:
| Secret | Description |
|--------|-------------|
| `STAGING_HOST` | Staging server hostname/IP |
| `STAGING_USER` | SSH username for staging |
| `STAGING_SSH_KEY` | Private key for staging SSH |
| `PROD_HOST` | Production server hostname/IP |
| `PROD_USER` | SSH username for production |
| `PROD_SSH_KEY` | Private key for production SSH |
## Manual Deployment
### Prerequisites
- SSH access to target server
- Repository cloned at `~/apps/personal-portfolio`
- Virtual environment created at `.venv`
- Docker and Docker Compose installed
- PostgreSQL container running
### Steps
```bash
# 1. SSH to server
ssh user@server
# 2. Navigate to app directory
cd ~/apps/personal-portfolio
# 3. Pull latest changes
git fetch origin {branch}
git reset --hard origin/{branch}
# 4. Activate virtual environment
source .venv/bin/activate
# 5. Install dependencies
pip install -r requirements.txt
# 6. Run database migrations (if any)
# python -m alembic upgrade head
# 7. Run dbt models
cd dbt && dbt run --profiles-dir . && cd ..
# 8. Restart application
docker compose down
docker compose up -d
# 9. Verify health
curl http://localhost:8050/health
```
## Rollback Procedure
### Quick Rollback
If deployment fails, rollback to previous commit:
```bash
# 1. Find previous working commit
git log --oneline -10
# 2. Reset to that commit
git reset --hard {commit_hash}
# 3. Restart services
docker compose down
docker compose up -d
# 4. Verify
curl http://localhost:8050/health
```
### Full Rollback (Database)
If database changes need to be reverted:
```bash
# 1. Stop application
docker compose down
# 2. Restore database backup
pg_restore -h localhost -U portfolio -d portfolio backup.dump
# 3. Revert code
git reset --hard {commit_hash}
# 4. Run dbt at that version
cd dbt && dbt run --profiles-dir . && cd ..
# 5. Restart
docker compose up -d
```
## Health Checks
### Application Health
```bash
curl http://localhost:8050/health
```
Expected response:
```json
{"status": "healthy"}
```
### Database Health
```bash
docker compose exec postgres pg_isready -U portfolio
```
### Container Status
```bash
docker compose ps
```
## Monitoring
### View Logs
```bash
# All services
make logs
# Specific service
make logs SERVICE=postgres
# Or directly
docker compose logs -f
```
### Check Resource Usage
```bash
docker stats
```
## Troubleshooting
### Application Won't Start
1. Check container logs: `docker compose logs app`
2. Verify environment variables: `cat .env`
3. Check database connectivity: `docker compose exec postgres pg_isready`
4. Verify port availability: `lsof -i :8050`
### Database Connection Errors
1. Check postgres container: `docker compose ps postgres`
2. Verify DATABASE_URL in `.env`
3. Check postgres logs: `docker compose logs postgres`
4. Test connection: `docker compose exec postgres psql -U portfolio -c '\l'`
### dbt Failures
1. Check dbt logs: `cd dbt && dbt debug`
2. Verify profiles.yml: `cat dbt/profiles.yml`
3. Run with verbose output: `dbt run --debug`
### Out of Memory
1. Check memory usage: `free -h`
2. Review container limits in docker-compose.yml
3. Consider increasing swap or server resources
## Backup Procedures
### Database Backup
```bash
# Create backup
docker compose exec postgres pg_dump -U portfolio portfolio > backup_$(date +%Y%m%d).sql
# Compressed backup
docker compose exec postgres pg_dump -U portfolio -Fc portfolio > backup_$(date +%Y%m%d).dump
```
### Restore from Backup
```bash
# From SQL file
docker compose exec -T postgres psql -U portfolio portfolio < backup.sql
# From dump file
docker compose exec -T postgres pg_restore -U portfolio -d portfolio < backup.dump
```
## Deployment Checklist
Before deploying to production:
- [ ] All tests pass (`make test`)
- [ ] Linting passes (`make lint`)
- [ ] Staging deployment successful
- [ ] Manual testing on staging complete
- [ ] Database backup taken
- [ ] Rollback plan confirmed
- [ ] Team notified of deployment window

View File

@@ -1,17 +1,18 @@
# Toronto Neighbourhood Dashboard - Notebooks
# Dashboard Documentation Notebooks
Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
Documentation notebooks organized by dashboard project. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
## Directory Structure
```
notebooks/
├── README.md # This file
── overview/ # Overview tab visualizations
├── housing/ # Housing tab visualizations
├── safety/ # Safety tab visualizations
├── demographics/ # Demographics tab visualizations
└── amenities/ # Amenities tab visualizations
── toronto/ # Toronto Neighbourhood Dashboard
├── overview/ # Overview tab visualizations
├── housing/ # Housing tab visualizations
├── safety/ # Safety tab visualizations
├── demographics/ # Demographics tab visualizations
└── amenities/ # Amenities tab visualizations
```
## Notebook Template

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -50,8 +55,8 @@
" transit_per_1000,\n",
" total_amenities,\n",
" population\n",
"FROM mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
"FROM public_marts.mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
"ORDER BY total_amenities_per_1000 DESC\n",
"\"\"\"\n",
"\n",
@@ -75,17 +80,16 @@
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
@@ -101,7 +105,9 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'total_amenities_per_1000', 'amenity_index', 'amenity_tier']].head(10)"
"df[\n",
" [\"neighbourhood_name\", \"total_amenities_per_1000\", \"amenity_index\", \"amenity_tier\"]\n",
"].head(10)"
]
},
{
@@ -112,7 +118,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
]
},
{
@@ -122,18 +128,24 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='total_amenities_per_1000',\n",
" hover_data=['neighbourhood_name', 'amenity_index', 'parks_per_1000', 'schools_per_1000'],\n",
" color_scale='Greens',\n",
" title='Toronto Amenities per 1,000 Population',\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"total_amenities_per_1000\",\n",
" hover_data=[\n",
" \"neighbourhood_name\",\n",
" \"amenity_index\",\n",
" \"parks_per_1000\",\n",
" \"schools_per_1000\",\n",
" ],\n",
" color_scale=\"Greens\",\n",
" title=\"Toronto Amenities per 1,000 Population\",\n",
" zoom=10,\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -44,8 +49,8 @@
" transit_index,\n",
" amenity_index,\n",
" amenity_tier\n",
"FROM mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
"FROM public_marts.mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
"ORDER BY amenity_index DESC\n",
"\"\"\"\n",
"\n",
@@ -74,8 +79,8 @@
"bottom_5 = df.tail(5)\n",
"\n",
"# Prepare radar data\n",
"categories = ['Parks', 'Schools', 'Transit']\n",
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
"categories = [\"Parks\", \"Schools\", \"Transit\"]\n",
"index_columns = [\"parks_index\", \"schools_index\", \"transit_index\"]"
]
},
{
@@ -92,9 +97,29 @@
"outputs": [],
"source": [
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
"display(\n",
" top_5[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"parks_index\",\n",
" \"schools_index\",\n",
" \"transit_index\",\n",
" \"amenity_index\",\n",
" ]\n",
" ]\n",
")\n",
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
"display(\n",
" bottom_5[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"parks_index\",\n",
" \"schools_index\",\n",
" \"transit_index\",\n",
" \"amenity_index\",\n",
" ]\n",
" ]\n",
")"
]
},
{
@@ -105,7 +130,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_radar` from `portfolio_app.figures.radar`."
"Uses `create_radar` from `portfolio_app.figures.toronto.radar`."
]
},
{
@@ -115,28 +140,21 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.radar import create_radar_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.radar import create_comparison_radar\n",
"\n",
"# Compare top neighbourhood vs city average (100)\n",
"top_hood = top_5.iloc[0]\n",
"metrics = [\"parks_index\", \"schools_index\", \"transit_index\"]\n",
"\n",
"data = [\n",
" {\n",
" 'name': top_hood['neighbourhood_name'],\n",
" 'values': [top_hood['parks_index'], top_hood['schools_index'], top_hood['transit_index']],\n",
" 'categories': categories\n",
" },\n",
" {\n",
" 'name': 'City Average',\n",
" 'values': [100, 100, 100],\n",
" 'categories': categories\n",
" }\n",
"]\n",
"\n",
"fig = create_radar_figure(\n",
" data=data,\n",
"fig = create_comparison_radar(\n",
" selected_data=top_hood.to_dict(),\n",
" average_data={\"parks_index\": 100, \"schools_index\": 100, \"transit_index\": 100},\n",
" metrics=metrics,\n",
" selected_name=top_hood[\"neighbourhood_name\"],\n",
" average_name=\"City Average\",\n",
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -44,8 +49,8 @@
" transit_count,\n",
" population,\n",
" amenity_tier\n",
"FROM mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
"FROM public_marts.mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
" AND transit_per_1000 IS NOT NULL\n",
"ORDER BY transit_per_1000 DESC\n",
"\"\"\"\n",
@@ -70,7 +75,7 @@
"metadata": {},
"outputs": [],
"source": [
"data = df.head(20).to_dict('records')"
"data = df.head(20).to_dict(\"records\")"
]
},
{
@@ -86,7 +91,9 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'transit_per_1000', 'transit_index', 'transit_count']].head(10)"
"df[[\"neighbourhood_name\", \"transit_per_1000\", \"transit_index\", \"transit_count\"]].head(\n",
" 10\n",
")"
]
},
{
@@ -97,7 +104,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
@@ -107,17 +114,18 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
"\n",
"fig = create_horizontal_bar(\n",
" data=data,\n",
" name_column='neighbourhood_name',\n",
" value_column='transit_per_1000',\n",
" title='Top 20 Neighbourhoods by Transit Accessibility',\n",
" color='#00BCD4',\n",
" value_format='.2f',\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"transit_per_1000\",\n",
" title=\"Top 20 Neighbourhoods by Transit Accessibility\",\n",
" color=\"#00BCD4\",\n",
" value_format=\".2f\",\n",
")\n",
"\n",
"fig.show()"
@@ -136,7 +144,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(f\"City-wide Transit Statistics:\")\n",
"print(\"City-wide Transit Statistics:\")\n",
"print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n",
"print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n",
"print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -45,8 +50,8 @@
" population,\n",
" income_quintile,\n",
" pct_renter_occupied\n",
"FROM mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_demographics)\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
" AND median_age IS NOT NULL\n",
"ORDER BY median_age DESC\n",
"\"\"\"\n",
@@ -72,13 +77,13 @@
"metadata": {},
"outputs": [],
"source": [
"city_avg = df['city_avg_age'].iloc[0]\n",
"df['age_category'] = df['median_age'].apply(\n",
" lambda x: 'Younger' if x < city_avg else 'Older'\n",
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
")\n",
"df['age_deviation'] = df['median_age'] - city_avg\n",
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
"\n",
"data = df.to_dict('records')"
"data = df.to_dict(\"records\")"
]
},
{
@@ -96,9 +101,13 @@
"source": [
"print(f\"City Average Age: {city_avg:.1f}\")\n",
"print(\"\\nYoungest Neighbourhoods:\")\n",
"display(df.tail(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])\n",
"display(\n",
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")\n",
"print(\"\\nOldest Neighbourhoods:\")\n",
"display(df.head(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])"
"display(\n",
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")"
]
},
{
@@ -109,7 +118,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`."
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
@@ -119,20 +128,21 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column='neighbourhood_name',\n",
" value_column='median_age',\n",
" title='Youngest & Oldest Neighbourhoods (Median Age)',\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"median_age\",\n",
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top='#FF9800', # Orange for older\n",
" color_bottom='#2196F3', # Blue for younger\n",
" value_format='.1f',\n",
" color_top=\"#FF9800\", # Orange for older\n",
" color_bottom=\"#2196F3\", # Blue for younger\n",
" value_format=\".1f\",\n",
")\n",
"\n",
"fig.show()"
@@ -153,7 +163,7 @@
"source": [
"# Age by income quintile\n",
"print(\"Median Age by Income Quintile:\")\n",
"df.groupby('income_quintile')['median_age'].mean().round(1)"
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
]
}
],

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -47,8 +52,8 @@
" income_quintile,\n",
" population,\n",
" unemployment_rate\n",
"FROM mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_demographics)\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
"ORDER BY median_household_income DESC\n",
"\"\"\"\n",
"\n",
@@ -73,19 +78,18 @@
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"df['income_thousands'] = df['median_household_income'] / 1000\n",
"import geopandas as gpd\n",
"\n",
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
@@ -101,7 +105,9 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'median_household_income', 'income_index', 'income_quintile']].head(10)"
"df[\n",
" [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n",
"].head(10)"
]
},
{
@@ -112,7 +118,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
]
},
{
@@ -122,18 +128,19 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='median_household_income',\n",
" hover_data=['neighbourhood_name', 'income_index', 'income_quintile'],\n",
" color_scale='Viridis',\n",
" title='Toronto Median Household Income by Neighbourhood',\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"median_household_income\",\n",
" hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n",
" color_scale=\"Viridis\",\n",
" title=\"Toronto Median Household Income by Neighbourhood\",\n",
" zoom=10,\n",
")\n",
"\n",
@@ -153,7 +160,9 @@
"metadata": {},
"outputs": [],
"source": [
"df.groupby('income_quintile')['median_household_income'].agg(['count', 'mean', 'min', 'max']).round(0)"
"df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n",
" [\"count\", \"mean\", \"min\", \"max\"]\n",
").round(0)"
]
}
],

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -44,8 +49,8 @@
" land_area_sqkm,\n",
" median_household_income,\n",
" pct_renter_occupied\n",
"FROM mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_demographics)\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
" AND population_density IS NOT NULL\n",
"ORDER BY population_density DESC\n",
"\"\"\"\n",
@@ -70,7 +75,7 @@
"metadata": {},
"outputs": [],
"source": [
"data = df.head(20).to_dict('records')"
"data = df.head(20).to_dict(\"records\")"
]
},
{
@@ -86,7 +91,9 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'population_density', 'population', 'land_area_sqkm']].head(10)"
"df[[\"neighbourhood_name\", \"population_density\", \"population\", \"land_area_sqkm\"]].head(\n",
" 10\n",
")"
]
},
{
@@ -97,7 +104,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
@@ -107,17 +114,18 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
"\n",
"fig = create_horizontal_bar(\n",
" data=data,\n",
" name_column='neighbourhood_name',\n",
" value_column='population_density',\n",
" title='Top 20 Most Dense Neighbourhoods',\n",
" color='#9C27B0',\n",
" value_format=',.0f',\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"population_density\",\n",
" title=\"Top 20 Most Dense Neighbourhoods\",\n",
" color=\"#9C27B0\",\n",
" value_format=\",.0f\",\n",
")\n",
"\n",
"fig.show()"
@@ -136,7 +144,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(f\"City-wide Statistics:\")\n",
"print(\"City-wide Statistics:\")\n",
"print(f\" Total Population: {df['population'].sum():,.0f}\")\n",
"print(f\" Total Area: {df['land_area_sqkm'].sum():,.1f} sq km\")\n",
"print(f\" Average Density: {df['population_density'].mean():,.0f} per sq km\")\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -47,8 +52,8 @@
" avg_rent_2bed,\n",
" median_household_income,\n",
" is_affordable\n",
"FROM mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_housing)\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
"ORDER BY affordability_index ASC\n",
"\"\"\"\n",
"\n",
@@ -73,17 +78,16 @@
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
@@ -99,7 +103,15 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'affordability_index', 'rent_to_income_pct', 'avg_rent_2bed', 'is_affordable']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"affordability_index\",\n",
" \"rent_to_income_pct\",\n",
" \"avg_rent_2bed\",\n",
" \"is_affordable\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -110,7 +122,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `color_column`: 'affordability_index'\n",
@@ -124,18 +136,19 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='affordability_index',\n",
" hover_data=['neighbourhood_name', 'rent_to_income_pct', 'avg_rent_2bed'],\n",
" color_scale='RdYlGn_r', # Reversed: lower index (affordable) = green\n",
" title='Toronto Housing Affordability Index',\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"affordability_index\",\n",
" hover_data=[\"neighbourhood_name\", \"rent_to_income_pct\", \"avg_rent_2bed\"],\n",
" color_scale=\"RdYlGn_r\", # Reversed: lower index (affordable) = green\n",
" title=\"Toronto Housing Affordability Index\",\n",
" zoom=10,\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"# City-wide average rent by year\n",
"query = \"\"\"\n",
@@ -45,8 +50,8 @@
" AVG(avg_rent_2bed) as avg_rent_2bed,\n",
" AVG(avg_rent_3bed) as avg_rent_3bed,\n",
" AVG(rent_yoy_change_pct) as avg_yoy_change\n",
"FROM mart_neighbourhood_housing\n",
"WHERE year >= (SELECT MAX(year) - 5 FROM mart_neighbourhood_housing)\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_housing)\n",
"GROUP BY year\n",
"ORDER BY year\n",
"\"\"\"\n",
@@ -73,23 +78,25 @@
"outputs": [],
"source": [
"# Create date column from year\n",
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
"\n",
"# Melt for multi-line chart\n",
"df_melted = df.melt(\n",
" id_vars=['year', 'date'],\n",
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
" var_name='bedroom_type',\n",
" value_name='avg_rent'\n",
" id_vars=[\"year\", \"date\"],\n",
" value_vars=[\"avg_rent_bachelor\", \"avg_rent_1bed\", \"avg_rent_2bed\", \"avg_rent_3bed\"],\n",
" var_name=\"bedroom_type\",\n",
" value_name=\"avg_rent\",\n",
")\n",
"\n",
"# Clean labels\n",
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
" 'avg_rent_bachelor': 'Bachelor',\n",
" 'avg_rent_1bed': '1 Bedroom',\n",
" 'avg_rent_2bed': '2 Bedroom',\n",
" 'avg_rent_3bed': '3 Bedroom'\n",
"})"
"df_melted[\"bedroom_type\"] = df_melted[\"bedroom_type\"].map(\n",
" {\n",
" \"avg_rent_bachelor\": \"Bachelor\",\n",
" \"avg_rent_1bed\": \"1 Bedroom\",\n",
" \"avg_rent_2bed\": \"2 Bedroom\",\n",
" \"avg_rent_3bed\": \"3 Bedroom\",\n",
" }\n",
")"
]
},
{
@@ -105,7 +112,16 @@
"metadata": {},
"outputs": [],
"source": [
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
"df[\n",
" [\n",
" \"year\",\n",
" \"avg_rent_bachelor\",\n",
" \"avg_rent_1bed\",\n",
" \"avg_rent_2bed\",\n",
" \"avg_rent_3bed\",\n",
" \"avg_yoy_change\",\n",
" ]\n",
"]"
]
},
{
@@ -116,7 +132,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
"Uses `create_price_time_series` from `portfolio_app.figures.toronto.time_series`.\n",
"\n",
"**Key Parameters:**\n",
"- `date_column`: 'date'\n",
@@ -131,18 +147,19 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.time_series import create_price_time_series\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"data = df_melted.to_dict('records')\n",
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
"\n",
"data = df_melted.to_dict(\"records\")\n",
"\n",
"fig = create_price_time_series(\n",
" data=data,\n",
" date_column='date',\n",
" price_column='avg_rent',\n",
" group_column='bedroom_type',\n",
" title='Toronto Average Rent Trend (5 Years)',\n",
" date_column=\"date\",\n",
" price_column=\"avg_rent\",\n",
" group_column=\"bedroom_type\",\n",
" title=\"Toronto Average Rent Trend (5 Years)\",\n",
")\n",
"\n",
"fig.show()"
@@ -163,7 +180,7 @@
"source": [
"# Show year-over-year changes\n",
"print(\"Year-over-Year Rent Change (%)\")\n",
"df[['year', 'avg_yoy_change']].dropna()"
"df[[\"year\", \"avg_yoy_change\"]].dropna()"
]
}
],

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -44,8 +49,8 @@
" income_quintile,\n",
" total_rental_units,\n",
" average_dwelling_value\n",
"FROM mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_housing)\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
" AND pct_owner_occupied IS NOT NULL\n",
"ORDER BY pct_renter_occupied DESC\n",
"\"\"\"\n",
@@ -73,18 +78,17 @@
"source": [
"# Prepare for stacked bar\n",
"df_stacked = df.melt(\n",
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
" var_name='tenure_type',\n",
" value_name='percentage'\n",
" id_vars=[\"neighbourhood_name\", \"income_quintile\"],\n",
" value_vars=[\"pct_owner_occupied\", \"pct_renter_occupied\"],\n",
" var_name=\"tenure_type\",\n",
" value_name=\"percentage\",\n",
")\n",
"\n",
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
" 'pct_owner_occupied': 'Owner',\n",
" 'pct_renter_occupied': 'Renter'\n",
"})\n",
"df_stacked[\"tenure_type\"] = df_stacked[\"tenure_type\"].map(\n",
" {\"pct_owner_occupied\": \"Owner\", \"pct_renter_occupied\": \"Renter\"}\n",
")\n",
"\n",
"data = df_stacked.to_dict('records')"
"data = df_stacked.to_dict(\"records\")"
]
},
{
@@ -101,7 +105,14 @@
"outputs": [],
"source": [
"print(\"Highest Renter Neighbourhoods:\")\n",
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"pct_renter_occupied\",\n",
" \"pct_owner_occupied\",\n",
" \"income_quintile\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -112,7 +123,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'neighbourhood_name'\n",
@@ -128,21 +139,22 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
"\n",
"# Show top 20 by renter percentage\n",
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
"top_20_names = df.head(20)[\"neighbourhood_name\"].tolist()\n",
"data_filtered = [d for d in data if d[\"neighbourhood_name\"] in top_20_names]\n",
"\n",
"fig = create_stacked_bar(\n",
" data=data_filtered,\n",
" x_column='neighbourhood_name',\n",
" value_column='percentage',\n",
" category_column='tenure_type',\n",
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
" x_column=\"neighbourhood_name\",\n",
" value_column=\"percentage\",\n",
" category_column=\"tenure_type\",\n",
" title=\"Housing Tenure Mix - Top 20 Renter Neighbourhoods\",\n",
" color_map={\"Owner\": \"#4CAF50\", \"Renter\": \"#2196F3\"},\n",
" show_percentages=True,\n",
")\n",
"\n",
@@ -168,7 +180,9 @@
"\n",
"# By income quintile\n",
"print(\"\\nTenure by Income Quintile:\")\n",
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
"df.groupby(\"income_quintile\")[\n",
" [\"pct_owner_occupied\", \"pct_renter_occupied\"]\n",
"].mean().round(1)"
]
}
],

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -44,8 +49,8 @@
" population,\n",
" livability_score,\n",
" crime_rate_per_100k\n",
"FROM mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_overview)\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
" AND median_household_income IS NOT NULL\n",
" AND safety_score IS NOT NULL\n",
"ORDER BY median_household_income DESC\n",
@@ -73,10 +78,10 @@
"outputs": [],
"source": [
"# Scale income to thousands for better axis readability\n",
"df['income_thousands'] = df['median_household_income'] / 1000\n",
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.to_dict('records')"
"data = df.to_dict(\"records\")"
]
},
{
@@ -92,7 +97,14 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'median_household_income', 'safety_score', 'crime_rate_per_100k']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"median_household_income\",\n",
" \"safety_score\",\n",
" \"crime_rate_per_100k\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -103,7 +115,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_scatter_figure` from `portfolio_app.figures.scatter`.\n",
"Uses `create_scatter_figure` from `portfolio_app.figures.toronto.scatter`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'income_thousands' (median household income in $K)\n",
@@ -120,19 +132,20 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.scatter import create_scatter_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.scatter import create_scatter_figure\n",
"\n",
"fig = create_scatter_figure(\n",
" data=data,\n",
" x_column='income_thousands',\n",
" y_column='safety_score',\n",
" name_column='neighbourhood_name',\n",
" size_column='population',\n",
" title='Income vs Safety by Neighbourhood',\n",
" x_title='Median Household Income ($K)',\n",
" y_title='Safety Score (0-100)',\n",
" x_column=\"income_thousands\",\n",
" y_column=\"safety_score\",\n",
" name_column=\"neighbourhood_name\",\n",
" size_column=\"population\",\n",
" title=\"Income vs Safety by Neighbourhood\",\n",
" x_title=\"Median Household Income ($K)\",\n",
" y_title=\"Safety Score (0-100)\",\n",
" trendline=True,\n",
")\n",
"\n",
@@ -162,7 +175,7 @@
"outputs": [],
"source": [
"# Calculate correlation coefficient\n",
"correlation = df['median_household_income'].corr(df['safety_score'])\n",
"correlation = df[\"median_household_income\"].corr(df[\"safety_score\"])\n",
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
]
}

View File

@@ -30,12 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"# Connect to database\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -49,8 +53,8 @@
" amenity_score,\n",
" population,\n",
" median_household_income\n",
"FROM mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_overview)\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
"\n",
@@ -76,21 +80,20 @@
"outputs": [],
"source": [
"# Transform geometry to GeoJSON\n",
"import geopandas as gpd\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"# Convert WKB geometry to GeoDataFrame\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"# Create GeoJSON FeatureCollection\n",
"geojson = json.loads(gdf.to_json())\n",
"\n",
"# Prepare data for figure factory\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
@@ -106,7 +109,15 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'livability_score', 'safety_score', 'affordability_score', 'amenity_score']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"livability_score\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -117,7 +128,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
@@ -134,18 +145,24 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='livability_score',\n",
" hover_data=['neighbourhood_name', 'safety_score', 'affordability_score', 'amenity_score'],\n",
" color_scale='RdYlGn',\n",
" title='Toronto Neighbourhood Livability Score',\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"livability_score\",\n",
" hover_data=[\n",
" \"neighbourhood_name\",\n",
" \"safety_score\",\n",
" \"affordability_score\",\n",
" \"amenity_score\",\n",
" ],\n",
" color_scale=\"RdYlGn\",\n",
" title=\"Toronto Neighbourhood Livability Score\",\n",
" zoom=10,\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -43,8 +48,8 @@
" safety_score,\n",
" affordability_score,\n",
" amenity_score\n",
"FROM mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_overview)\n",
"FROM public_marts.mart_neighbourhood_overview\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
" AND livability_score IS NOT NULL\n",
"ORDER BY livability_score DESC\n",
"\"\"\"\n",
@@ -72,7 +77,7 @@
"source": [
"# The figure factory handles top/bottom selection internally\n",
"# Just prepare as list of dicts\n",
"data = df.to_dict('records')"
"data = df.to_dict(\"records\")"
]
},
{
@@ -102,7 +107,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `data`: List of dicts with all neighbourhoods\n",
@@ -119,20 +124,21 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column='neighbourhood_name',\n",
" value_column='livability_score',\n",
" title='Top & Bottom 10 Neighbourhoods by Livability',\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"livability_score\",\n",
" title=\"Top & Bottom 10 Neighbourhoods by Livability\",\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top='#4CAF50', # Green for top performers\n",
" color_bottom='#F44336', # Red for bottom performers\n",
" value_format='.1f',\n",
" color_top=\"#4CAF50\", # Green for top performers\n",
" color_bottom=\"#F44336\", # Red for bottom performers\n",
" value_format=\".1f\",\n",
")\n",
"\n",
"fig.show()"

View File

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -47,8 +52,8 @@
" homicide_count,\n",
" total_incidents,\n",
" crime_rate_per_100k\n",
"FROM mart_neighbourhood_safety\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_safety)\n",
"FROM public_marts.mart_neighbourhood_safety\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
"ORDER BY total_incidents DESC\n",
"LIMIT 15\n",
"\"\"\"\n",
@@ -75,17 +80,25 @@
"outputs": [],
"source": [
"df_melted = df.melt(\n",
" id_vars=['neighbourhood_name', 'total_incidents'],\n",
" value_vars=['assault_count', 'auto_theft_count', 'break_enter_count', \n",
" 'robbery_count', 'theft_over_count', 'homicide_count'],\n",
" var_name='crime_type',\n",
" value_name='count'\n",
" id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n",
" value_vars=[\n",
" \"assault_count\",\n",
" \"auto_theft_count\",\n",
" \"break_enter_count\",\n",
" \"robbery_count\",\n",
" \"theft_over_count\",\n",
" \"homicide_count\",\n",
" ],\n",
" var_name=\"crime_type\",\n",
" value_name=\"count\",\n",
")\n",
"\n",
"# Clean labels\n",
"df_melted['crime_type'] = df_melted['crime_type'].str.replace('_count', '').str.replace('_', ' ').str.title()\n",
"df_melted[\"crime_type\"] = (\n",
" df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n",
")\n",
"\n",
"data = df_melted.to_dict('records')"
"data = df_melted.to_dict(\"records\")"
]
},
{
@@ -101,7 +114,15 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'assault_count', 'auto_theft_count', 'break_enter_count', 'total_incidents']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"assault_count\",\n",
" \"auto_theft_count\",\n",
" \"break_enter_count\",\n",
" \"total_incidents\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -112,7 +133,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`."
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
@@ -122,23 +143,24 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
"\n",
"fig = create_stacked_bar(\n",
" data=data,\n",
" x_column='neighbourhood_name',\n",
" value_column='count',\n",
" category_column='crime_type',\n",
" title='Crime Type Breakdown - Top 15 Neighbourhoods',\n",
" x_column=\"neighbourhood_name\",\n",
" value_column=\"count\",\n",
" category_column=\"crime_type\",\n",
" title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n",
" color_map={\n",
" 'Assault': '#d62728',\n",
" 'Auto Theft': '#ff7f0e',\n",
" 'Break Enter': '#9467bd',\n",
" 'Robbery': '#8c564b',\n",
" 'Theft Over': '#e377c2',\n",
" 'Homicide': '#1f77b4'\n",
" \"Assault\": \"#d62728\",\n",
" \"Auto Theft\": \"#ff7f0e\",\n",
" \"Break Enter\": \"#9467bd\",\n",
" \"Robbery\": \"#8c564b\",\n",
" \"Theft Over\": \"#e377c2\",\n",
" \"Homicide\": \"#1f77b4\",\n",
" },\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -47,8 +52,8 @@
" safety_tier,\n",
" total_incidents,\n",
" population\n",
"FROM mart_neighbourhood_safety\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_safety)\n",
"FROM public_marts.mart_neighbourhood_safety\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
"ORDER BY crime_rate_per_100k DESC\n",
"\"\"\"\n",
"\n",
@@ -73,17 +78,16 @@
"metadata": {},
"outputs": [],
"source": [
"import geopandas as gpd\n",
"import json\n",
"\n",
"import geopandas as gpd\n",
"\n",
"gdf = gpd.GeoDataFrame(\n",
" df,\n",
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
" crs='EPSG:4326'\n",
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
")\n",
"\n",
"geojson = json.loads(gdf.to_json())\n",
"data = df.drop(columns=['geometry']).to_dict('records')"
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
]
},
{
@@ -99,7 +103,15 @@
"metadata": {},
"outputs": [],
"source": [
"df[['neighbourhood_name', 'crime_rate_per_100k', 'crime_index', 'safety_tier', 'total_incidents']].head(10)"
"df[\n",
" [\n",
" \"neighbourhood_name\",\n",
" \"crime_rate_per_100k\",\n",
" \"crime_index\",\n",
" \"safety_tier\",\n",
" \"total_incidents\",\n",
" ]\n",
"].head(10)"
]
},
{
@@ -110,7 +122,7 @@
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
"\n",
"**Key Parameters:**\n",
"- `color_column`: 'crime_rate_per_100k'\n",
@@ -124,18 +136,19 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
"\n",
"fig = create_choropleth_figure(\n",
" geojson=geojson,\n",
" data=data,\n",
" location_key='neighbourhood_id',\n",
" color_column='crime_rate_per_100k',\n",
" hover_data=['neighbourhood_name', 'crime_index', 'total_incidents'],\n",
" color_scale='RdYlGn_r',\n",
" title='Toronto Crime Rate per 100,000 Population',\n",
" location_key=\"neighbourhood_id\",\n",
" color_column=\"crime_rate_per_100k\",\n",
" hover_data=[\"neighbourhood_name\", \"crime_index\", \"total_incidents\"],\n",
" color_scale=\"RdYlGn_r\",\n",
" title=\"Toronto Crime Rate per 100,000 Population\",\n",
" zoom=10,\n",
")\n",
"\n",

View File

@@ -30,11 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
@@ -45,8 +50,8 @@
" AVG(break_enter_rate_per_100k) as avg_break_enter_rate,\n",
" SUM(total_incidents) as total_city_incidents,\n",
" AVG(crime_yoy_change_pct) as avg_yoy_change\n",
"FROM mart_neighbourhood_safety\n",
"WHERE year >= (SELECT MAX(year) - 5 FROM mart_neighbourhood_safety)\n",
"FROM public_marts.mart_neighbourhood_safety\n",
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_safety)\n",
"GROUP BY year\n",
"ORDER BY year\n",
"\"\"\"\n",
@@ -72,21 +77,23 @@
"metadata": {},
"outputs": [],
"source": [
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
"\n",
"# Melt for multi-line\n",
"df_melted = df.melt(\n",
" id_vars=['year', 'date'],\n",
" value_vars=['avg_assault_rate', 'avg_auto_theft_rate', 'avg_break_enter_rate'],\n",
" var_name='crime_type',\n",
" value_name='rate_per_100k'\n",
" id_vars=[\"year\", \"date\"],\n",
" value_vars=[\"avg_assault_rate\", \"avg_auto_theft_rate\", \"avg_break_enter_rate\"],\n",
" var_name=\"crime_type\",\n",
" value_name=\"rate_per_100k\",\n",
")\n",
"\n",
"df_melted['crime_type'] = df_melted['crime_type'].map({\n",
" 'avg_assault_rate': 'Assault',\n",
" 'avg_auto_theft_rate': 'Auto Theft',\n",
" 'avg_break_enter_rate': 'Break & Enter'\n",
"})"
"df_melted[\"crime_type\"] = df_melted[\"crime_type\"].map(\n",
" {\n",
" \"avg_assault_rate\": \"Assault\",\n",
" \"avg_auto_theft_rate\": \"Auto Theft\",\n",
" \"avg_break_enter_rate\": \"Break & Enter\",\n",
" }\n",
")"
]
},
{
@@ -102,7 +109,7 @@
"metadata": {},
"outputs": [],
"source": [
"df[['year', 'avg_crime_rate', 'total_city_incidents', 'avg_yoy_change']]"
"df[[\"year\", \"avg_crime_rate\", \"total_city_incidents\", \"avg_yoy_change\"]]"
]
},
{
@@ -123,22 +130,23 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.time_series import create_price_time_series\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"data = df_melted.to_dict('records')\n",
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
"\n",
"data = df_melted.to_dict(\"records\")\n",
"\n",
"fig = create_price_time_series(\n",
" data=data,\n",
" date_column='date',\n",
" price_column='rate_per_100k',\n",
" group_column='crime_type',\n",
" title='Toronto Crime Trends by Type (5 Years)',\n",
" date_column=\"date\",\n",
" price_column=\"rate_per_100k\",\n",
" group_column=\"crime_type\",\n",
" title=\"Toronto Crime Trends by Type (5 Years)\",\n",
")\n",
"\n",
"# Remove dollar sign formatting since this is rate data\n",
"fig.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
"fig.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
"\n",
"fig.show()"
]
@@ -157,15 +165,19 @@
"outputs": [],
"source": [
"# Total crime rate trend\n",
"total_data = df[['date', 'avg_crime_rate']].rename(columns={'avg_crime_rate': 'total_rate'}).to_dict('records')\n",
"total_data = (\n",
" df[[\"date\", \"avg_crime_rate\"]]\n",
" .rename(columns={\"avg_crime_rate\": \"total_rate\"})\n",
" .to_dict(\"records\")\n",
")\n",
"\n",
"fig2 = create_price_time_series(\n",
" data=total_data,\n",
" date_column='date',\n",
" price_column='total_rate',\n",
" title='Toronto Overall Crime Rate Trend',\n",
" date_column=\"date\",\n",
" price_column=\"total_rate\",\n",
" title=\"Toronto Overall Crime Rate Trend\",\n",
")\n",
"fig2.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
"fig2.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
"fig2.show()"
]
}

View File

@@ -1,5 +1,5 @@
"""Application-level callbacks for the portfolio app."""
from . import sidebar, theme
from . import contact, sidebar, theme
__all__ = ["sidebar", "theme"]
__all__ = ["contact", "sidebar", "theme"]

View File

@@ -0,0 +1,214 @@
"""Contact form submission callback with Formspree integration."""
import re
from typing import Any
import dash_mantine_components as dmc
import requests
from dash import Input, Output, State, callback, no_update
from dash_iconify import DashIconify
FORMSPREE_ENDPOINT = "https://formspree.io/f/mqelqzpd"
EMAIL_REGEX = re.compile(r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")
def _validate_form(
name: str | None, email: str | None, message: str | None
) -> str | None:
"""Validate form fields and return error message if invalid."""
if not name or not name.strip():
return "Please enter your name."
if not email or not email.strip():
return "Please enter your email address."
if not EMAIL_REGEX.match(email.strip()):
return "Please enter a valid email address."
if not message or not message.strip():
return "Please enter a message."
return None
def _create_success_alert() -> dmc.Alert:
"""Create success feedback alert."""
return dmc.Alert(
"Thank you for your message! I'll get back to you soon.",
title="Message Sent",
color="green",
variant="light",
icon=DashIconify(icon="tabler:check", width=20),
withCloseButton=True,
)
def _create_error_alert(message: str) -> dmc.Alert:
"""Create error feedback alert."""
return dmc.Alert(
message,
title="Error",
color="red",
variant="light",
icon=DashIconify(icon="tabler:alert-circle", width=20),
withCloseButton=True,
)
@callback( # type: ignore[misc]
Output("contact-feedback", "children"),
Output("contact-submit", "loading"),
Output("contact-name", "value"),
Output("contact-email", "value"),
Output("contact-subject", "value"),
Output("contact-message", "value"),
Output("contact-name", "error"),
Output("contact-email", "error"),
Output("contact-message", "error"),
Input("contact-submit", "n_clicks"),
State("contact-name", "value"),
State("contact-email", "value"),
State("contact-subject", "value"),
State("contact-message", "value"),
State("contact-gotcha", "value"),
prevent_initial_call=True,
)
def submit_contact_form(
n_clicks: int | None,
name: str | None,
email: str | None,
subject: str | None,
message: str | None,
gotcha: str | None,
) -> tuple[Any, ...]:
"""Submit contact form to Formspree.
Args:
n_clicks: Button click count.
name: User's name.
email: User's email address.
subject: Message subject (optional).
message: Message content.
gotcha: Honeypot field value (should be empty for real users).
Returns:
Tuple of (feedback, loading, name, email, subject, message,
name_error, email_error, message_error).
"""
if not n_clicks:
return (no_update,) * 9
# Check honeypot - if filled, silently "succeed" (it's a bot)
if gotcha:
return (
_create_success_alert(),
False,
"",
"",
None,
"",
None,
None,
None,
)
# Validate form
validation_error = _validate_form(name, email, message)
if validation_error:
# Determine which field has the error
name_error = "Required" if not name or not name.strip() else None
email_error = None
message_error = "Required" if not message or not message.strip() else None
if not email or not email.strip():
email_error = "Required"
elif not EMAIL_REGEX.match(email.strip()):
email_error = "Invalid email format"
return (
_create_error_alert(validation_error),
False,
no_update,
no_update,
no_update,
no_update,
name_error,
email_error,
message_error,
)
# Prepare form data (validation passed, so name/email/message are not None)
assert name is not None
assert email is not None
assert message is not None
form_data = {
"name": name.strip(),
"email": email.strip(),
"subject": subject or "General Inquiry",
"message": message.strip(),
"_gotcha": "", # Formspree honeypot
}
# Submit to Formspree
try:
response = requests.post(
FORMSPREE_ENDPOINT,
json=form_data,
headers={
"Accept": "application/json",
"Content-Type": "application/json",
},
timeout=10,
)
if response.status_code == 200:
# Success - clear form
return (
_create_success_alert(),
False,
"",
"",
None,
"",
None,
None,
None,
)
else:
# Formspree returned an error
return (
_create_error_alert(
"Failed to send message. Please try again or use direct contact."
),
False,
no_update,
no_update,
no_update,
no_update,
None,
None,
None,
)
except requests.exceptions.Timeout:
return (
_create_error_alert("Request timed out. Please try again."),
False,
no_update,
no_update,
no_update,
no_update,
None,
None,
None,
)
except requests.exceptions.RequestException:
return (
_create_error_alert(
"Network error. Please check your connection and try again."
),
False,
no_update,
no_update,
no_update,
no_update,
None,
None,
None,
)

View File

@@ -28,7 +28,7 @@ def create_metric_selector(
label=label,
data=options,
value=default_value or (options[0]["value"] if options else None),
style={"width": "200px"},
w=200,
)
@@ -64,7 +64,7 @@ def create_map_controls(
id=f"{id_prefix}-layer-toggle",
label="Show Boundaries",
checked=True,
style={"marginTop": "10px"},
mt="sm",
)
)

View File

@@ -5,7 +5,7 @@ from typing import Any
import dash_mantine_components as dmc
from dash import dcc
from portfolio_app.figures.summary_cards import create_metric_card_figure
from portfolio_app.figures.toronto.summary_cards import create_metric_card_figure
class MetricCard:

View File

@@ -38,7 +38,7 @@ def create_year_selector(
label=label,
data=options,
value=str(default_year),
style={"width": "120px"},
w=120,
)
@@ -83,7 +83,8 @@ def create_time_slider(
marks=marks,
step=1,
minRange=1,
style={"marginTop": "20px", "marginBottom": "10px"},
mt="md",
mb="sm",
),
],
p="md",
@@ -131,5 +132,5 @@ def create_month_selector(
label=label,
data=options,
value=str(default_month),
style={"width": "140px"},
w=140,
)

View File

@@ -0,0 +1,48 @@
"""Design system tokens and utilities."""
from .tokens import (
CHART_PALETTE,
COLOR_ACCENT,
COLOR_NEGATIVE,
COLOR_POSITIVE,
COLOR_WARNING,
GRID_COLOR,
GRID_COLOR_DARK,
PALETTE_COMPARISON,
PALETTE_GENDER,
PALETTE_TREND,
PAPER_BG,
PLOT_BG,
POLICY_COLORS,
TEXT_MUTED,
TEXT_PRIMARY,
TEXT_SECONDARY,
get_colorbar_defaults,
get_default_layout,
)
__all__ = [
# Text colors
"TEXT_PRIMARY",
"TEXT_SECONDARY",
"TEXT_MUTED",
# Chart backgrounds
"GRID_COLOR",
"GRID_COLOR_DARK",
"PAPER_BG",
"PLOT_BG",
# Semantic colors
"COLOR_POSITIVE",
"COLOR_NEGATIVE",
"COLOR_WARNING",
"COLOR_ACCENT",
# Palettes
"CHART_PALETTE",
"PALETTE_COMPARISON",
"PALETTE_GENDER",
"PALETTE_TREND",
"POLICY_COLORS",
# Utility functions
"get_default_layout",
"get_colorbar_defaults",
]

View File

@@ -0,0 +1,162 @@
"""Centralized design tokens for consistent styling across the application.
This module provides a single source of truth for colors, ensuring:
- Consistent styling across all Plotly figures and components
- Accessibility compliance (WCAG color contrast)
- Easy theme updates without hunting through multiple files
Usage:
from portfolio_app.design import TEXT_PRIMARY, CHART_PALETTE
fig.update_layout(font_color=TEXT_PRIMARY)
"""
from typing import Any
# =============================================================================
# TEXT COLORS (Dark Theme)
# =============================================================================
TEXT_PRIMARY = "#c9c9c9"
"""Primary text color for labels, titles, and body text."""
TEXT_SECONDARY = "#888888"
"""Secondary text color for subtitles, captions, and muted text."""
TEXT_MUTED = "#666666"
"""Muted text color for disabled states and placeholders."""
# =============================================================================
# CHART BACKGROUND & GRID
# =============================================================================
GRID_COLOR = "rgba(128, 128, 128, 0.2)"
"""Standard grid line color with transparency."""
GRID_COLOR_DARK = "rgba(128, 128, 128, 0.3)"
"""Darker grid for radar charts and polar plots."""
PAPER_BG = "rgba(0, 0, 0, 0)"
"""Transparent paper background for charts."""
PLOT_BG = "rgba(0, 0, 0, 0)"
"""Transparent plot background for charts."""
# =============================================================================
# SEMANTIC COLORS
# =============================================================================
COLOR_POSITIVE = "#40c057"
"""Positive/success indicator (Mantine green-6)."""
COLOR_NEGATIVE = "#fa5252"
"""Negative/error indicator (Mantine red-6)."""
COLOR_WARNING = "#fab005"
"""Warning indicator (Mantine yellow-6)."""
COLOR_ACCENT = "#228be6"
"""Primary accent color (Mantine blue-6)."""
# =============================================================================
# ACCESSIBLE CHART PALETTE
# =============================================================================
# Okabe-Ito palette - optimized for all color vision deficiencies
# Reference: https://jfly.uni-koeln.de/color/
CHART_PALETTE = [
"#0072B2", # Blue (primary data series)
"#E69F00", # Orange
"#56B4E9", # Sky blue
"#009E73", # Teal/green
"#F0E442", # Yellow
"#D55E00", # Vermillion
"#CC79A7", # Pink
"#000000", # Black (use sparingly)
]
"""
Accessible categorical palette (Okabe-Ito).
Distinguishable for deuteranopia, protanopia, and tritanopia.
Use indices 0-6 for most charts; index 7 (black) for emphasis only.
"""
# Semantic subsets for specific use cases
PALETTE_COMPARISON = [CHART_PALETTE[0], CHART_PALETTE[1]]
"""Two-color palette for A/B comparisons."""
PALETTE_GENDER = {
"male": "#56B4E9", # Sky blue
"female": "#CC79A7", # Pink
}
"""Gender-specific colors (accessible contrast)."""
PALETTE_TREND = {
"positive": COLOR_POSITIVE,
"negative": COLOR_NEGATIVE,
"neutral": TEXT_SECONDARY,
}
"""Trend indicator colors for sparklines and deltas."""
# =============================================================================
# POLICY/EVENT MARKERS (Time Series)
# =============================================================================
POLICY_COLORS = {
"policy_change": "#E69F00", # Orange - policy changes
"major_event": "#D55E00", # Vermillion - major events
"data_note": "#56B4E9", # Sky blue - data annotations
"forecast": "#009E73", # Teal - forecast periods
"highlight": "#F0E442", # Yellow - highlighted regions
}
"""Colors for policy markers and event annotations on time series."""
# =============================================================================
# CHART LAYOUT DEFAULTS
# =============================================================================
def get_default_layout() -> dict[str, Any]:
"""Return default Plotly layout settings with design tokens.
Returns:
dict: Layout configuration for fig.update_layout()
Example:
fig.update_layout(**get_default_layout())
"""
return {
"paper_bgcolor": PAPER_BG,
"plot_bgcolor": PLOT_BG,
"font": {"color": TEXT_PRIMARY},
"title": {"font": {"color": TEXT_PRIMARY}},
"legend": {"font": {"color": TEXT_PRIMARY}},
"xaxis": {
"gridcolor": GRID_COLOR,
"linecolor": GRID_COLOR,
"tickfont": {"color": TEXT_PRIMARY},
"title": {"font": {"color": TEXT_PRIMARY}},
},
"yaxis": {
"gridcolor": GRID_COLOR,
"linecolor": GRID_COLOR,
"tickfont": {"color": TEXT_PRIMARY},
"title": {"font": {"color": TEXT_PRIMARY}},
},
}
def get_colorbar_defaults() -> dict[str, Any]:
"""Return default colorbar settings with design tokens.
Returns:
dict: Colorbar configuration for choropleth/heatmap traces
"""
return {
"tickfont": {"color": TEXT_PRIMARY},
"title": {"font": {"color": TEXT_PRIMARY}},
}

View File

@@ -1,61 +1,15 @@
"""Plotly figure factories for data visualization."""
"""Plotly figure factories for data visualization.
from .bar_charts import (
create_horizontal_bar,
create_ranking_bar,
create_stacked_bar,
)
from .choropleth import (
create_choropleth_figure,
create_zone_map,
)
from .demographics import (
create_age_pyramid,
create_donut_chart,
create_income_distribution,
)
from .radar import (
create_comparison_radar,
create_radar_figure,
)
from .scatter import (
create_bubble_chart,
create_scatter_figure,
)
from .summary_cards import create_metric_card_figure, create_summary_metrics
from .time_series import (
add_policy_markers,
create_market_comparison_chart,
create_price_time_series,
create_time_series_with_events,
create_volume_time_series,
)
Figure factories are organized by dashboard domain:
- toronto/ : Toronto Neighbourhood Dashboard figures
Usage:
from portfolio_app.figures.toronto import create_choropleth_figure
from portfolio_app.figures.toronto import create_ranking_bar
"""
from . import toronto
__all__ = [
# Choropleth
"create_choropleth_figure",
"create_zone_map",
# Time series
"create_price_time_series",
"create_volume_time_series",
"create_market_comparison_chart",
"create_time_series_with_events",
"add_policy_markers",
# Summary
"create_metric_card_figure",
"create_summary_metrics",
# Bar charts
"create_ranking_bar",
"create_stacked_bar",
"create_horizontal_bar",
# Scatter plots
"create_scatter_figure",
"create_bubble_chart",
# Radar charts
"create_radar_figure",
"create_comparison_radar",
# Demographics
"create_age_pyramid",
"create_donut_chart",
"create_income_distribution",
"toronto",
]

View File

@@ -0,0 +1,61 @@
"""Plotly figure factories for Toronto dashboard visualizations."""
from .bar_charts import (
create_horizontal_bar,
create_ranking_bar,
create_stacked_bar,
)
from .choropleth import (
create_choropleth_figure,
create_zone_map,
)
from .demographics import (
create_age_pyramid,
create_donut_chart,
create_income_distribution,
)
from .radar import (
create_comparison_radar,
create_radar_figure,
)
from .scatter import (
create_bubble_chart,
create_scatter_figure,
)
from .summary_cards import create_metric_card_figure, create_summary_metrics
from .time_series import (
add_policy_markers,
create_market_comparison_chart,
create_price_time_series,
create_time_series_with_events,
create_volume_time_series,
)
__all__ = [
# Choropleth
"create_choropleth_figure",
"create_zone_map",
# Time series
"create_price_time_series",
"create_volume_time_series",
"create_market_comparison_chart",
"create_time_series_with_events",
"add_policy_markers",
# Summary
"create_metric_card_figure",
"create_summary_metrics",
# Bar charts
"create_ranking_bar",
"create_stacked_bar",
"create_horizontal_bar",
# Scatter plots
"create_scatter_figure",
"create_bubble_chart",
# Radar charts
"create_radar_figure",
"create_comparison_radar",
# Demographics
"create_age_pyramid",
"create_donut_chart",
"create_income_distribution",
]

View File

@@ -6,6 +6,17 @@ import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from portfolio_app.design import (
CHART_PALETTE,
COLOR_NEGATIVE,
COLOR_POSITIVE,
GRID_COLOR,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_ranking_bar(
data: list[dict[str, Any]],
@@ -14,8 +25,8 @@ def create_ranking_bar(
title: str | None = None,
top_n: int = 10,
bottom_n: int = 10,
color_top: str = "#4CAF50",
color_bottom: str = "#F44336",
color_top: str = COLOR_POSITIVE,
color_bottom: str = COLOR_NEGATIVE,
value_format: str = ",.0f",
) -> go.Figure:
"""Create horizontal bar chart showing top and bottom rankings.
@@ -87,10 +98,10 @@ def create_ranking_bar(
barmode="group",
showlegend=True,
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "title": None},
yaxis={"autorange": "reversed", "title": None},
margin={"l": 10, "r": 10, "t": 40, "b": 10},
)
@@ -126,10 +137,10 @@ def create_stacked_bar(
df = pd.DataFrame(data)
# Default color scheme
# Default color scheme using accessible palette
if color_map is None:
categories = df[category_column].unique()
colors = px.colors.qualitative.Set2[: len(categories)]
colors = CHART_PALETTE[: len(categories)]
color_map = dict(zip(categories, colors, strict=False))
fig = px.bar(
@@ -147,11 +158,11 @@ def create_stacked_bar(
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "title": None},
yaxis={"gridcolor": GRID_COLOR, "title": None},
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
margin={"l": 10, "r": 10, "t": 60, "b": 10},
)
@@ -164,7 +175,7 @@ def create_horizontal_bar(
name_column: str,
value_column: str,
title: str | None = None,
color: str = "#2196F3",
color: str = CHART_PALETTE[0],
value_format: str = ",.0f",
sort: bool = True,
) -> go.Figure:
@@ -204,10 +215,10 @@ def create_horizontal_bar(
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "title": None},
yaxis={"title": None},
margin={"l": 10, "r": 10, "t": 40, "b": 10},
)
@@ -225,13 +236,13 @@ def _create_empty_figure(title: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"visible": False},
yaxis={"visible": False},
)

View File

@@ -5,6 +5,13 @@ from typing import Any
import plotly.express as px
import plotly.graph_objects as go
from portfolio_app.design import (
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_choropleth_figure(
geojson: dict[str, Any] | None,
@@ -55,9 +62,9 @@ def create_choropleth_figure(
margin={"l": 0, "r": 0, "t": 40, "b": 0},
title=title or "Toronto Housing Map",
height=500,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
)
fig.add_annotation(
text="No geometry data available. Complete QGIS digitization to enable map.",
@@ -66,7 +73,7 @@ def create_choropleth_figure(
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
return fig
@@ -98,17 +105,17 @@ def create_choropleth_figure(
margin={"l": 0, "r": 0, "t": 40, "b": 0},
title=title,
height=500,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
coloraxis_colorbar={
"title": {
"text": color_column.replace("_", " ").title(),
"font": {"color": "#c9c9c9"},
"font": {"color": TEXT_PRIMARY},
},
"thickness": 15,
"len": 0.7,
"tickfont": {"color": "#c9c9c9"},
"tickfont": {"color": TEXT_PRIMARY},
},
)

View File

@@ -5,6 +5,16 @@ from typing import Any
import pandas as pd
import plotly.graph_objects as go
from portfolio_app.design import (
CHART_PALETTE,
GRID_COLOR,
PALETTE_GENDER,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_age_pyramid(
data: list[dict[str, Any]],
@@ -52,7 +62,7 @@ def create_age_pyramid(
x=male_values_neg,
orientation="h",
name="Male",
marker_color="#2196F3",
marker_color=PALETTE_GENDER["male"],
hovertemplate="%{y}<br>Male: %{customdata:,}<extra></extra>",
customdata=male_values,
)
@@ -65,7 +75,7 @@ def create_age_pyramid(
x=female_values,
orientation="h",
name="Female",
marker_color="#E91E63",
marker_color=PALETTE_GENDER["female"],
hovertemplate="%{y}<br>Female: %{x:,}<extra></extra>",
)
)
@@ -77,12 +87,12 @@ def create_age_pyramid(
title=title,
barmode="overlay",
bargap=0.1,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={
"title": "Population",
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"range": [-max_val * 1.1, max_val * 1.1],
"tickvals": [-max_val, -max_val / 2, 0, max_val / 2, max_val],
"ticktext": [
@@ -93,7 +103,7 @@ def create_age_pyramid(
f"{max_val:,.0f}",
],
},
yaxis={"title": None, "gridcolor": "rgba(128,128,128,0.2)"},
yaxis={"title": None, "gridcolor": GRID_COLOR},
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
margin={"l": 10, "r": 10, "t": 60, "b": 10},
)
@@ -127,17 +137,9 @@ def create_donut_chart(
df = pd.DataFrame(data)
# Use accessible palette by default
if colors is None:
colors = [
"#2196F3",
"#4CAF50",
"#FF9800",
"#E91E63",
"#9C27B0",
"#00BCD4",
"#FFC107",
"#795548",
]
colors = CHART_PALETTE
fig = go.Figure(
go.Pie(
@@ -153,8 +155,8 @@ def create_donut_chart(
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
font_color=TEXT_PRIMARY,
showlegend=False,
margin={"l": 10, "r": 10, "t": 60, "b": 10},
)
@@ -167,7 +169,7 @@ def create_income_distribution(
bracket_column: str,
count_column: str,
title: str | None = None,
color: str = "#4CAF50",
color: str = CHART_PALETTE[3], # Teal
) -> go.Figure:
"""Create histogram-style bar chart for income distribution.
@@ -199,17 +201,17 @@ def create_income_distribution(
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={
"title": "Income Bracket",
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"tickangle": -45,
},
yaxis={
"title": "Households",
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
},
margin={"l": 10, "r": 10, "t": 60, "b": 80},
)
@@ -227,13 +229,13 @@ def _create_empty_figure(title: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"visible": False},
yaxis={"visible": False},
)

View File

@@ -4,6 +4,14 @@ from typing import Any
import plotly.graph_objects as go
from portfolio_app.design import (
CHART_PALETTE,
GRID_COLOR_DARK,
PAPER_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_radar_figure(
data: list[dict[str, Any]],
@@ -32,16 +40,9 @@ def create_radar_figure(
if not data or not metrics:
return _create_empty_figure(title or "Radar Chart")
# Default colors
# Use accessible palette by default
if colors is None:
colors = [
"#2196F3",
"#4CAF50",
"#FF9800",
"#E91E63",
"#9C27B0",
"#00BCD4",
]
colors = CHART_PALETTE
fig = go.Figure()
@@ -78,19 +79,19 @@ def create_radar_figure(
polar={
"radialaxis": {
"visible": True,
"gridcolor": "rgba(128,128,128,0.3)",
"linecolor": "rgba(128,128,128,0.3)",
"tickfont": {"color": "#c9c9c9"},
"gridcolor": GRID_COLOR_DARK,
"linecolor": GRID_COLOR_DARK,
"tickfont": {"color": TEXT_PRIMARY},
},
"angularaxis": {
"gridcolor": "rgba(128,128,128,0.3)",
"linecolor": "rgba(128,128,128,0.3)",
"tickfont": {"color": "#c9c9c9"},
"gridcolor": GRID_COLOR_DARK,
"linecolor": GRID_COLOR_DARK,
"tickfont": {"color": TEXT_PRIMARY},
},
"bgcolor": "rgba(0,0,0,0)",
"bgcolor": PAPER_BG,
},
paper_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
font_color=TEXT_PRIMARY,
showlegend=len(data) > 1,
legend={"orientation": "h", "yanchor": "bottom", "y": -0.2},
margin={"l": 40, "r": 40, "t": 60, "b": 40},
@@ -133,7 +134,7 @@ def create_comparison_radar(
metrics=metrics,
name_column="__name__",
title=title,
colors=["#4CAF50", "#9E9E9E"],
colors=[CHART_PALETTE[3], TEXT_SECONDARY], # Teal for selected, gray for avg
)
@@ -156,11 +157,11 @@ def _create_empty_figure(title: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
font_color=TEXT_PRIMARY,
)
return fig

View File

@@ -6,6 +6,15 @@ import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from portfolio_app.design import (
CHART_PALETTE,
GRID_COLOR,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_scatter_figure(
data: list[dict[str, Any]],
@@ -72,21 +81,21 @@ def create_scatter_figure(
if trendline:
fig.update_traces(
selector={"mode": "lines"},
line={"color": "#FF9800", "dash": "dash", "width": 2},
line={"color": CHART_PALETTE[1], "dash": "dash", "width": 2},
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"title": x_title or x_column.replace("_", " ").title(),
"zeroline": False,
},
yaxis={
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"title": y_title or y_column.replace("_", " ").title(),
"zeroline": False,
},
@@ -140,19 +149,20 @@ def create_bubble_chart(
hover_name=name_column,
size_max=size_max,
opacity=0.7,
color_discrete_sequence=CHART_PALETTE,
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"title": x_title or x_column.replace("_", " ").title(),
},
yaxis={
"gridcolor": "rgba(128,128,128,0.2)",
"gridcolor": GRID_COLOR,
"title": y_title or y_column.replace("_", " ").title(),
},
margin={"l": 10, "r": 10, "t": 40, "b": 10},
@@ -171,13 +181,13 @@ def _create_empty_figure(title: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"visible": False},
yaxis={"visible": False},
)

View File

@@ -4,6 +4,14 @@ from typing import Any
import plotly.graph_objects as go
from portfolio_app.design import (
COLOR_NEGATIVE,
COLOR_POSITIVE,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
)
def create_metric_card_figure(
value: float | int | str,
@@ -59,8 +67,12 @@ def create_metric_card_figure(
"relative": False,
"valueformat": ".1f",
"suffix": delta_suffix,
"increasing": {"color": "green" if positive_is_good else "red"},
"decreasing": {"color": "red" if positive_is_good else "green"},
"increasing": {
"color": COLOR_POSITIVE if positive_is_good else COLOR_NEGATIVE
},
"decreasing": {
"color": COLOR_NEGATIVE if positive_is_good else COLOR_POSITIVE
},
}
fig.add_trace(go.Indicator(**indicator_config))
@@ -68,9 +80,9 @@ def create_metric_card_figure(
fig.update_layout(
height=120,
margin={"l": 20, "r": 20, "t": 40, "b": 20},
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font={"family": "Inter, sans-serif", "color": "#c9c9c9"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font={"family": "Inter, sans-serif", "color": TEXT_PRIMARY},
)
return fig

View File

@@ -5,6 +5,15 @@ from typing import Any
import plotly.express as px
import plotly.graph_objects as go
from portfolio_app.design import (
CHART_PALETTE,
GRID_COLOR,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
def create_price_time_series(
data: list[dict[str, Any]],
@@ -38,14 +47,14 @@ def create_price_time_series(
x=0.5,
y=0.5,
showarrow=False,
font={"color": "#888888"},
font={"color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
height=350,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
)
return fig
@@ -59,6 +68,7 @@ def create_price_time_series(
y=price_column,
color=group_column,
title=title,
color_discrete_sequence=CHART_PALETTE,
)
else:
fig = px.line(
@@ -67,6 +77,7 @@ def create_price_time_series(
y=price_column,
title=title,
)
fig.update_traces(line_color=CHART_PALETTE[0])
fig.update_layout(
height=350,
@@ -76,11 +87,11 @@ def create_price_time_series(
yaxis_tickprefix="$",
yaxis_tickformat=",",
hovermode="x unified",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
)
return fig
@@ -118,14 +129,14 @@ def create_volume_time_series(
x=0.5,
y=0.5,
showarrow=False,
font={"color": "#888888"},
font={"color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
height=350,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
)
return fig
@@ -140,6 +151,7 @@ def create_volume_time_series(
y=volume_column,
color=group_column,
title=title,
color_discrete_sequence=CHART_PALETTE,
)
else:
fig = px.bar(
@@ -148,6 +160,7 @@ def create_volume_time_series(
y=volume_column,
title=title,
)
fig.update_traces(marker_color=CHART_PALETTE[0])
else:
if group_column and group_column in df.columns:
fig = px.line(
@@ -156,6 +169,7 @@ def create_volume_time_series(
y=volume_column,
color=group_column,
title=title,
color_discrete_sequence=CHART_PALETTE,
)
else:
fig = px.line(
@@ -164,6 +178,7 @@ def create_volume_time_series(
y=volume_column,
title=title,
)
fig.update_traces(line_color=CHART_PALETTE[0])
fig.update_layout(
height=350,
@@ -172,11 +187,11 @@ def create_volume_time_series(
yaxis_title=volume_column.replace("_", " ").title(),
yaxis_tickformat=",",
hovermode="x unified",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
)
return fig
@@ -211,14 +226,14 @@ def create_market_comparison_chart(
x=0.5,
y=0.5,
showarrow=False,
font={"color": "#888888"},
font={"color": TEXT_SECONDARY},
)
fig.update_layout(
title=title,
height=400,
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
)
return fig
@@ -230,8 +245,6 @@ def create_market_comparison_chart(
fig = make_subplots(specs=[[{"secondary_y": True}]])
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
for i, metric in enumerate(metrics[:4]):
if metric not in df.columns:
continue
@@ -242,7 +255,7 @@ def create_market_comparison_chart(
x=df[date_column],
y=df[metric],
name=metric.replace("_", " ").title(),
line={"color": colors[i % len(colors)]},
line={"color": CHART_PALETTE[i % len(CHART_PALETTE)]},
),
secondary_y=secondary,
)
@@ -252,18 +265,18 @@ def create_market_comparison_chart(
height=400,
margin={"l": 40, "r": 40, "t": 50, "b": 40},
hovermode="x unified",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
legend={
"orientation": "h",
"yanchor": "bottom",
"y": 1.02,
"xanchor": "right",
"x": 1,
"font": {"color": "#c9c9c9"},
"font": {"color": TEXT_PRIMARY},
},
)
@@ -290,13 +303,13 @@ def add_policy_markers(
if not policy_events:
return fig
# Color mapping for policy categories
# Color mapping for policy categories using design tokens
category_colors = {
"monetary": "#1f77b4", # Blue
"tax": "#2ca02c", # Green
"regulatory": "#ff7f0e", # Orange
"supply": "#9467bd", # Purple
"economic": "#d62728", # Red
"monetary": CHART_PALETTE[0], # Blue
"tax": CHART_PALETTE[3], # Teal/green
"regulatory": CHART_PALETTE[1], # Orange
"supply": CHART_PALETTE[6], # Pink
"economic": CHART_PALETTE[5], # Vermillion
}
# Symbol mapping for expected direction
@@ -313,7 +326,7 @@ def add_policy_markers(
title = event.get("title", "Policy Event")
level = event.get("level", "federal")
color = category_colors.get(category, "#666666")
color = category_colors.get(category, TEXT_SECONDARY)
symbol = direction_symbols.get(direction, "circle")
# Add vertical line for the event
@@ -335,7 +348,7 @@ def add_policy_markers(
"symbol": symbol,
"size": 12,
"color": color,
"line": {"width": 1, "color": "white"},
"line": {"width": 1, "color": TEXT_PRIMARY},
},
name=title,
hovertemplate=(

View File

@@ -2,6 +2,7 @@
import dash
import dash_mantine_components as dmc
from dash import html
from dash_iconify import DashIconify
dash.register_page(__name__, path="/contact", name="Contact")
@@ -51,51 +52,57 @@ def create_intro_section() -> dmc.Stack:
def create_contact_form() -> dmc.Paper:
"""Create the contact form (disabled in Phase 1)."""
"""Create the contact form with Formspree integration."""
return dmc.Paper(
dmc.Stack(
[
dmc.Title("Send a Message", order=2, size="h4"),
dmc.Alert(
"Contact form submission is coming soon. Please use the direct contact "
"methods below for now.",
title="Form Coming Soon",
color="blue",
variant="light",
),
# Feedback container for success/error messages
html.Div(id="contact-feedback"),
dmc.TextInput(
id="contact-name",
label="Name",
placeholder="Your name",
leftSection=DashIconify(icon="tabler:user", width=18),
disabled=True,
required=True,
),
dmc.TextInput(
id="contact-email",
label="Email",
placeholder="your.email@example.com",
leftSection=DashIconify(icon="tabler:mail", width=18),
disabled=True,
required=True,
),
dmc.Select(
id="contact-subject",
label="Subject",
placeholder="Select a subject",
data=SUBJECT_OPTIONS,
leftSection=DashIconify(icon="tabler:tag", width=18),
disabled=True,
),
dmc.Textarea(
id="contact-message",
label="Message",
placeholder="Your message...",
minRows=4,
disabled=True,
required=True,
),
# Honeypot field for spam protection (hidden from users)
dmc.TextInput(
id="contact-gotcha",
style={"position": "absolute", "left": "-9999px"},
tabIndex=-1,
autoComplete="off",
),
dmc.Button(
"Send Message",
id="contact-submit",
fullWidth=True,
leftSection=DashIconify(icon="tabler:send", width=18),
disabled=True,
),
],
gap="md",
style={"position": "relative"},
),
p="xl",
radius="md",

View File

@@ -1,10 +1,19 @@
"""Chart callbacks for supporting visualizations."""
# mypy: disable-error-code="misc,no-untyped-def,arg-type"
import pandas as pd
import plotly.graph_objects as go
from dash import Input, Output, callback
from portfolio_app.figures import (
from portfolio_app.design import (
CHART_PALETTE,
GRID_COLOR,
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
from portfolio_app.figures.toronto import (
create_donut_chart,
create_horizontal_bar,
create_radar_figure,
@@ -43,7 +52,24 @@ def update_overview_scatter(year: str) -> go.Figure:
# Compute safety score (inverse of crime rate)
if "total_crime_rate" in merged.columns:
max_crime = merged["total_crime_rate"].max()
merged["safety_score"] = 100 - (merged["total_crime_rate"] / max_crime * 100)
if max_crime and max_crime > 0:
merged["safety_score"] = 100 - (
merged["total_crime_rate"] / max_crime * 100
)
else:
merged["safety_score"] = 50 # Default if no crime data
# Fill NULL population with median or default value for sizing
if "population" in merged.columns:
median_pop = merged["population"].median()
default_pop = median_pop if pd.notna(median_pop) else 10000
merged["population"] = merged["population"].fillna(default_pop)
# Filter rows with required data for scatter plot
merged = merged.dropna(subset=["median_household_income", "safety_score"])
if merged.empty:
return _empty_chart("Insufficient data for scatter plot")
data = merged.to_dict("records")
@@ -76,12 +102,13 @@ def update_housing_trend(year: str, neighbourhood_id: int | None) -> go.Figure:
return _empty_chart("No trend data available")
# Placeholder for trend data - would be historical
base_rent = averages.get("avg_rent_2bed") or 2000
data = [
{"year": "2019", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.85},
{"year": "2020", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.88},
{"year": "2021", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.92},
{"year": "2022", "avg_rent": averages.get("avg_rent_2bed", 2000) * 0.96},
{"year": "2023", "avg_rent": averages.get("avg_rent_2bed", 2000)},
{"year": "2019", "avg_rent": base_rent * 0.85},
{"year": "2020", "avg_rent": base_rent * 0.88},
{"year": "2021", "avg_rent": base_rent * 0.92},
{"year": "2022", "avg_rent": base_rent * 0.96},
{"year": "2023", "avg_rent": base_rent},
]
fig = go.Figure()
@@ -90,18 +117,18 @@ def update_housing_trend(year: str, neighbourhood_id: int | None) -> go.Figure:
x=[d["year"] for d in data],
y=[d["avg_rent"] for d in data],
mode="lines+markers",
line={"color": "#2196F3", "width": 2},
line={"color": CHART_PALETTE[0], "width": 2},
marker={"size": 8},
name="City Average",
)
)
fig.update_layout(
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "rgba(128,128,128,0.2)"},
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": "Avg Rent (2BR)"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR},
yaxis={"gridcolor": GRID_COLOR, "title": "Avg Rent (2BR)"},
showlegend=False,
margin={"l": 40, "r": 10, "t": 10, "b": 30},
)
@@ -134,7 +161,7 @@ def update_housing_types(year: str) -> go.Figure:
data=data,
name_column="type",
value_column="percentage",
colors=["#4CAF50", "#2196F3"],
colors=[CHART_PALETTE[3], CHART_PALETTE[0]], # Teal for owner, blue for renter
)
@@ -159,19 +186,19 @@ def update_safety_trend(year: str) -> go.Figure:
x=[d["year"] for d in data],
y=[d["crime_rate"] for d in data],
mode="lines+markers",
line={"color": "#FF5722", "width": 2},
line={"color": CHART_PALETTE[5], "width": 2}, # Vermillion
marker={"size": 8},
fill="tozeroy",
fillcolor="rgba(255,87,34,0.1)",
fillcolor="rgba(213, 94, 0, 0.1)", # Vermillion with opacity
)
)
fig.update_layout(
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
xaxis={"gridcolor": "rgba(128,128,128,0.2)"},
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": "Crime Rate per 100K"},
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"gridcolor": GRID_COLOR},
yaxis={"gridcolor": GRID_COLOR, "title": "Crime Rate per 100K"},
showlegend=False,
margin={"l": 40, "r": 10, "t": 10, "b": 30},
)
@@ -214,7 +241,7 @@ def update_safety_types(year: str) -> go.Figure:
data=data,
name_column="category",
value_column="count",
color="#FF5722",
color=CHART_PALETTE[5], # Vermillion for crime
)
@@ -245,7 +272,11 @@ def update_demographics_age(year: str) -> go.Figure:
data=data,
name_column="age_group",
value_column="percentage",
colors=["#9C27B0", "#673AB7", "#3F51B5"],
colors=[
CHART_PALETTE[2],
CHART_PALETTE[0],
CHART_PALETTE[4],
], # Sky, Blue, Yellow
)
@@ -282,7 +313,7 @@ def update_demographics_income(year: str) -> go.Figure:
data=data,
name_column="bracket",
value_column="count",
color="#4CAF50",
color=CHART_PALETTE[3], # Teal
sort=False,
)
@@ -314,7 +345,7 @@ def update_amenities_breakdown(year: str) -> go.Figure:
data=data,
name_column="type",
value_column="count",
color="#4CAF50",
color=CHART_PALETTE[3], # Teal
)
@@ -330,10 +361,11 @@ def update_amenities_radar(year: str, neighbourhood_id: int | None) -> go.Figure
# Get city averages
averages = get_city_averages(year_int)
amenity_score = averages.get("avg_amenity_score") or 50
city_data = {
"parks_per_1000": averages.get("avg_amenity_score", 50) / 100 * 10,
"schools_per_1000": averages.get("avg_amenity_score", 50) / 100 * 5,
"childcare_per_1000": averages.get("avg_amenity_score", 50) / 100 * 3,
"parks_per_1000": amenity_score / 100 * 10,
"schools_per_1000": amenity_score / 100 * 5,
"childcare_per_1000": amenity_score / 100 * 3,
"transit_access": 70,
}
@@ -367,9 +399,9 @@ def _empty_chart(message: str) -> go.Figure:
"""Create an empty chart with a message."""
fig = go.Figure()
fig.update_layout(
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"visible": False},
yaxis={"visible": False},
)
@@ -380,6 +412,6 @@ def _empty_chart(message: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
return fig

View File

@@ -4,7 +4,13 @@
import plotly.graph_objects as go
from dash import Input, Output, State, callback, no_update
from portfolio_app.figures import create_choropleth_figure, create_ranking_bar
from portfolio_app.design import (
PAPER_BG,
PLOT_BG,
TEXT_PRIMARY,
TEXT_SECONDARY,
)
from portfolio_app.figures.toronto import create_choropleth_figure, create_ranking_bar
from portfolio_app.toronto.services import (
get_amenities_data,
get_demographics_data,
@@ -267,8 +273,8 @@ def _empty_map(message: str) -> go.Figure:
"zoom": 9.5,
},
margin={"l": 0, "r": 0, "t": 0, "b": 0},
paper_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
font_color=TEXT_PRIMARY,
)
fig.add_annotation(
text=message,
@@ -277,7 +283,7 @@ def _empty_map(message: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
return fig
@@ -286,9 +292,9 @@ def _empty_chart(message: str) -> go.Figure:
"""Create an empty chart with a message."""
fig = go.Figure()
fig.update_layout(
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
font_color="#c9c9c9",
paper_bgcolor=PAPER_BG,
plot_bgcolor=PLOT_BG,
font_color=TEXT_PRIMARY,
xaxis={"visible": False},
yaxis={"visible": False},
)
@@ -299,6 +305,6 @@ def _empty_chart(message: str) -> go.Figure:
x=0.5,
y=0.5,
showarrow=False,
font={"size": 14, "color": "#888888"},
font={"size": 14, "color": TEXT_SECONDARY},
)
return fig

View File

@@ -3,7 +3,12 @@
from .amenities import load_amenities, load_amenity_counts
from .base import bulk_insert, get_session, upsert_by_key
from .census import load_census_data
from .cmhc import load_cmhc_record, load_cmhc_rentals
from .cmhc import (
ensure_toronto_cma_zone,
load_cmhc_record,
load_cmhc_rentals,
load_statcan_cmhc_data,
)
from .cmhc_crosswalk import (
build_cmhc_neighbourhood_crosswalk,
disaggregate_zone_value,
@@ -32,6 +37,8 @@ __all__ = [
# Fact loaders
"load_cmhc_rentals",
"load_cmhc_record",
"load_statcan_cmhc_data",
"ensure_toronto_cma_zone",
# Phase 3 loaders
"load_census_data",
"load_crime_data",

View File

@@ -1,5 +1,9 @@
"""Loader for CMHC rental data into fact_rentals."""
import logging
from datetime import date
from typing import Any
from sqlalchemy.orm import Session
from portfolio_app.toronto.models import DimCMHCZone, DimTime, FactRentals
@@ -8,6 +12,12 @@ from portfolio_app.toronto.schemas import CMHCAnnualSurvey, CMHCRentalRecord
from .base import get_session, upsert_by_key
from .dimensions import generate_date_key
logger = logging.getLogger(__name__)
# Toronto CMA zone code for CMA-level data
TORONTO_CMA_ZONE_CODE = "TORCMA"
TORONTO_CMA_ZONE_NAME = "Toronto CMA"
def load_cmhc_rentals(
survey: CMHCAnnualSurvey,
@@ -135,3 +145,117 @@ def load_cmhc_record(
return _load(session)
with get_session() as sess:
return _load(sess)
def ensure_toronto_cma_zone(session: Session | None = None) -> int:
"""Ensure Toronto CMA zone exists in dim_cmhc_zone.
Creates the zone if it doesn't exist.
Args:
session: Optional existing session.
Returns:
The zone_key for Toronto CMA.
"""
def _ensure(sess: Session) -> int:
zone = (
sess.query(DimCMHCZone).filter_by(zone_code=TORONTO_CMA_ZONE_CODE).first()
)
if zone:
return int(zone.zone_key)
# Create new zone
new_zone = DimCMHCZone(
zone_code=TORONTO_CMA_ZONE_CODE,
zone_name=TORONTO_CMA_ZONE_NAME,
geometry=None, # CMA-level doesn't need geometry
)
sess.add(new_zone)
sess.flush()
logger.info(f"Created Toronto CMA zone with zone_key={new_zone.zone_key}")
return int(new_zone.zone_key)
if session:
return _ensure(session)
with get_session() as sess:
result = _ensure(sess)
sess.commit()
return result
def load_statcan_cmhc_data(
records: list[Any], # List of CMHCRentalRecord from statcan_cmhc parser
session: Session | None = None,
) -> int:
"""Load CMHC rental data from StatCan parser into fact_rentals.
This function handles CMA-level data from the StatCan API, which provides
aggregate Toronto data rather than zone-level HMIP data.
Args:
records: List of CMHCRentalRecord dataclass instances from statcan_cmhc parser.
session: Optional existing session.
Returns:
Number of records loaded.
"""
from portfolio_app.toronto.parsers.statcan_cmhc import (
CMHCRentalRecord as StatCanRecord,
)
def _load(sess: Session) -> int:
# Ensure Toronto CMA zone exists
zone_key = ensure_toronto_cma_zone(sess)
loaded = 0
for record in records:
if not isinstance(record, StatCanRecord):
logger.warning(f"Skipping invalid record type: {type(record)}")
continue
# Generate date key for this record's survey date
survey_date = date(record.year, record.month, 1)
date_key = generate_date_key(survey_date)
# Verify time dimension exists
time_dim = sess.query(DimTime).filter_by(date_key=date_key).first()
if not time_dim:
logger.warning(
f"Time dimension not found for {survey_date}, skipping record"
)
continue
# Create fact record
fact = FactRentals(
date_key=date_key,
zone_key=zone_key,
bedroom_type=record.bedroom_type,
universe=record.universe,
avg_rent=float(record.avg_rent) if record.avg_rent else None,
median_rent=None, # StatCan doesn't provide median
vacancy_rate=float(record.vacancy_rate)
if record.vacancy_rate
else None,
availability_rate=None,
turnover_rate=None,
rent_change_pct=None,
reliability_code=None,
)
# Upsert
inserted, updated = upsert_by_key(
sess, FactRentals, [fact], ["date_key", "zone_key", "bedroom_type"]
)
loaded += inserted + updated
logger.info(f"Loaded {loaded} CMHC rental records from StatCan")
return loaded
if session:
return _load(session)
with get_session() as sess:
result = _load(sess)
sess.commit()
return result

View File

@@ -8,11 +8,18 @@ from sqlalchemy.orm import Mapped, mapped_column
from .base import Base
# Schema constants
RAW_TORONTO_SCHEMA = "raw_toronto"
class DimTime(Base):
"""Time dimension table."""
"""Time dimension table (shared across all projects).
Note: Stays in public schema as it's a shared dimension.
"""
__tablename__ = "dim_time"
__table_args__ = {"schema": "public"}
date_key: Mapped[int] = mapped_column(Integer, primary_key=True)
full_date: Mapped[date] = mapped_column(Date, nullable=False, unique=True)
@@ -27,6 +34,7 @@ class DimCMHCZone(Base):
"""CMHC zone dimension table with PostGIS geometry."""
__tablename__ = "dim_cmhc_zone"
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
zone_key: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
zone_code: Mapped[str] = mapped_column(String(10), nullable=False, unique=True)
@@ -41,6 +49,7 @@ class DimNeighbourhood(Base):
"""
__tablename__ = "dim_neighbourhood"
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
neighbourhood_id: Mapped[int] = mapped_column(Integer, primary_key=True)
name: Mapped[str] = mapped_column(String(100), nullable=False)
@@ -69,6 +78,7 @@ class DimPolicyEvent(Base):
"""Policy event dimension for time-series annotation."""
__tablename__ = "dim_policy_event"
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
event_id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
event_date: Mapped[date] = mapped_column(Date, nullable=False)

View File

@@ -4,6 +4,7 @@ from sqlalchemy import ForeignKey, Index, Integer, Numeric, String
from sqlalchemy.orm import Mapped, mapped_column, relationship
from .base import Base
from .dimensions import RAW_TORONTO_SCHEMA
class BridgeCMHCNeighbourhood(Base):
@@ -14,6 +15,11 @@ class BridgeCMHCNeighbourhood(Base):
"""
__tablename__ = "bridge_cmhc_neighbourhood"
__table_args__ = (
Index("ix_bridge_cmhc_zone", "cmhc_zone_code"),
Index("ix_bridge_neighbourhood", "neighbourhood_id"),
{"schema": RAW_TORONTO_SCHEMA},
)
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
cmhc_zone_code: Mapped[str] = mapped_column(String(10), nullable=False)
@@ -22,11 +28,6 @@ class BridgeCMHCNeighbourhood(Base):
Numeric(5, 4), nullable=False
) # 0.0000 to 1.0000
__table_args__ = (
Index("ix_bridge_cmhc_zone", "cmhc_zone_code"),
Index("ix_bridge_neighbourhood", "neighbourhood_id"),
)
class FactCensus(Base):
"""Census statistics by neighbourhood and year.
@@ -35,6 +36,10 @@ class FactCensus(Base):
"""
__tablename__ = "fact_census"
__table_args__ = (
Index("ix_fact_census_neighbourhood_year", "neighbourhood_id", "census_year"),
{"schema": RAW_TORONTO_SCHEMA},
)
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
@@ -66,10 +71,6 @@ class FactCensus(Base):
Numeric(12, 2), nullable=True
)
__table_args__ = (
Index("ix_fact_census_neighbourhood_year", "neighbourhood_id", "census_year"),
)
class FactCrime(Base):
"""Crime statistics by neighbourhood and year.
@@ -78,6 +79,11 @@ class FactCrime(Base):
"""
__tablename__ = "fact_crime"
__table_args__ = (
Index("ix_fact_crime_neighbourhood_year", "neighbourhood_id", "year"),
Index("ix_fact_crime_type", "crime_type"),
{"schema": RAW_TORONTO_SCHEMA},
)
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
@@ -86,11 +92,6 @@ class FactCrime(Base):
count: Mapped[int] = mapped_column(Integer, nullable=False)
rate_per_100k: Mapped[float | None] = mapped_column(Numeric(10, 2), nullable=True)
__table_args__ = (
Index("ix_fact_crime_neighbourhood_year", "neighbourhood_id", "year"),
Index("ix_fact_crime_type", "crime_type"),
)
class FactAmenities(Base):
"""Amenity counts by neighbourhood.
@@ -99,6 +100,11 @@ class FactAmenities(Base):
"""
__tablename__ = "fact_amenities"
__table_args__ = (
Index("ix_fact_amenities_neighbourhood_year", "neighbourhood_id", "year"),
Index("ix_fact_amenities_type", "amenity_type"),
{"schema": RAW_TORONTO_SCHEMA},
)
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
@@ -106,11 +112,6 @@ class FactAmenities(Base):
count: Mapped[int] = mapped_column(Integer, nullable=False)
year: Mapped[int] = mapped_column(Integer, nullable=False)
__table_args__ = (
Index("ix_fact_amenities_neighbourhood_year", "neighbourhood_id", "year"),
Index("ix_fact_amenities_type", "amenity_type"),
)
class FactRentals(Base):
"""Fact table for CMHC rental market data.
@@ -119,13 +120,16 @@ class FactRentals(Base):
"""
__tablename__ = "fact_rentals"
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
date_key: Mapped[int] = mapped_column(
Integer, ForeignKey("dim_time.date_key"), nullable=False
Integer, ForeignKey("public.dim_time.date_key"), nullable=False
)
zone_key: Mapped[int] = mapped_column(
Integer, ForeignKey("dim_cmhc_zone.zone_key"), nullable=False
Integer,
ForeignKey(f"{RAW_TORONTO_SCHEMA}.dim_cmhc_zone.zone_key"),
nullable=False,
)
bedroom_type: Mapped[str] = mapped_column(String(20), nullable=False)
universe: Mapped[int | None] = mapped_column(Integer, nullable=True)
@@ -139,6 +143,6 @@ class FactRentals(Base):
rent_change_pct: Mapped[float | None] = mapped_column(Numeric(5, 2), nullable=True)
reliability_code: Mapped[str | None] = mapped_column(String(2), nullable=True)
# Relationships
time = relationship("DimTime", backref="rentals")
zone = relationship("DimCMHCZone", backref="rentals")
# Relationships - explicit foreign_keys needed for cross-schema joins
time = relationship("DimTime", foreign_keys=[date_key], backref="rentals")
zone = relationship("DimCMHCZone", foreign_keys=[zone_key], backref="rentals")

View File

@@ -0,0 +1,383 @@
"""Parser for CMHC rental data via Statistics Canada API.
Downloads rental market data (average rent, vacancy rates, universe)
from Statistics Canada's Web Data Service.
Data Sources:
- Table 34-10-0127: Vacancy rates
- Table 34-10-0129: Rental universe (total units)
- Table 34-10-0133: Average rent by bedroom type
"""
import contextlib
import io
import logging
import zipfile
from dataclasses import dataclass
from decimal import Decimal
from pathlib import Path
from typing import Any
import httpx
import pandas as pd
logger = logging.getLogger(__name__)
# StatCan Web Data Service endpoints
STATCAN_API_BASE = "https://www150.statcan.gc.ca/t1/wds/rest"
STATCAN_DOWNLOAD_BASE = "https://www150.statcan.gc.ca/n1/tbl/csv"
# CMHC table IDs
CMHC_TABLES = {
"vacancy": "34100127",
"universe": "34100129",
"rent": "34100133",
}
# Toronto CMA identifier in StatCan data
TORONTO_DGUID = "2011S0503535"
TORONTO_GEO_NAME = "Toronto, Ontario"
@dataclass
class CMHCRentalRecord:
"""Rental market record for database loading."""
year: int
month: int # CMHC surveys in October, so month=10
zone_name: str
bedroom_type: str
avg_rent: Decimal | None
vacancy_rate: Decimal | None
universe: int | None
class StatCanCMHCParser:
"""Parser for CMHC rental data from Statistics Canada.
Downloads and processes rental market survey data including:
- Average rents by bedroom type
- Vacancy rates
- Rental universe (total units)
Data is available from 1987 to present, updated annually in January.
"""
BEDROOM_TYPE_MAP = {
"Bachelor units": "bachelor",
"One bedroom units": "1bed",
"Two bedroom units": "2bed",
"Three bedroom units": "3bed",
"Total": "total",
}
STRUCTURE_FILTER = "Apartment structures of six units and over"
def __init__(
self,
cache_dir: Path | None = None,
timeout: float = 60.0,
) -> None:
"""Initialize parser.
Args:
cache_dir: Optional directory for caching downloaded files.
timeout: HTTP request timeout in seconds.
"""
self._cache_dir = cache_dir
self._timeout = timeout
self._client: httpx.Client | None = None
@property
def client(self) -> httpx.Client:
"""Lazy-initialize HTTP client."""
if self._client is None:
self._client = httpx.Client(
timeout=self._timeout,
follow_redirects=True,
)
return self._client
def close(self) -> None:
"""Close HTTP client."""
if self._client is not None:
self._client.close()
self._client = None
def __enter__(self) -> "StatCanCMHCParser":
return self
def __exit__(self, *args: Any) -> None:
self.close()
def _get_download_url(self, table_id: str) -> str:
"""Get CSV download URL for a StatCan table.
Args:
table_id: StatCan table ID (e.g., "34100133").
Returns:
Direct download URL for the CSV zip file.
"""
api_url = f"{STATCAN_API_BASE}/getFullTableDownloadCSV/{table_id}/en"
response = self.client.get(api_url)
response.raise_for_status()
data = response.json()
if data.get("status") != "SUCCESS":
raise ValueError(f"StatCan API error: {data}")
return str(data["object"])
def _download_table(self, table_id: str) -> pd.DataFrame:
"""Download and extract a StatCan table as DataFrame.
Args:
table_id: StatCan table ID.
Returns:
DataFrame with table data.
"""
# Check cache first
if self._cache_dir:
cache_file = self._cache_dir / f"{table_id}.csv"
if cache_file.exists():
logger.debug(f"Loading {table_id} from cache")
return pd.read_csv(cache_file)
# Get download URL and fetch
download_url = self._get_download_url(table_id)
logger.info(f"Downloading StatCan table {table_id}...")
response = self.client.get(download_url)
response.raise_for_status()
# Extract CSV from zip
with zipfile.ZipFile(io.BytesIO(response.content)) as zf:
csv_name = f"{table_id}.csv"
with zf.open(csv_name) as f:
df = pd.read_csv(f)
# Cache if directory specified
if self._cache_dir:
self._cache_dir.mkdir(parents=True, exist_ok=True)
df.to_csv(self._cache_dir / f"{table_id}.csv", index=False)
logger.info(f"Downloaded {len(df)} records from table {table_id}")
return df
def _filter_toronto(self, df: pd.DataFrame) -> pd.DataFrame:
"""Filter DataFrame to Toronto CMA only.
Args:
df: Full StatCan DataFrame.
Returns:
DataFrame filtered to Toronto.
"""
# Try DGUID first, then GEO name
if "DGUID" in df.columns:
toronto_df = df[df["DGUID"] == TORONTO_DGUID]
if len(toronto_df) > 0:
return toronto_df
if "GEO" in df.columns:
return df[df["GEO"] == TORONTO_GEO_NAME]
raise ValueError("Could not identify Toronto data in DataFrame")
def get_vacancy_rates(
self,
years: list[int] | None = None,
) -> dict[int, Decimal]:
"""Fetch Toronto vacancy rates by year.
Args:
years: Optional list of years to filter.
Returns:
Dictionary mapping year to vacancy rate.
"""
df = self._download_table(CMHC_TABLES["vacancy"])
df = self._filter_toronto(df)
# Filter years if specified
if years:
df = df[df["REF_DATE"].isin(years)]
# Extract year -> rate mapping
rates = {}
for _, row in df.iterrows():
year = int(row["REF_DATE"])
value = row.get("VALUE")
if pd.notna(value):
rates[year] = Decimal(str(value))
logger.info(f"Fetched vacancy rates for {len(rates)} years")
return rates
def get_rental_universe(
self,
years: list[int] | None = None,
) -> dict[tuple[int, str], int]:
"""Fetch Toronto rental universe (total units) by year and bedroom type.
Args:
years: Optional list of years to filter.
Returns:
Dictionary mapping (year, bedroom_type) to unit count.
"""
df = self._download_table(CMHC_TABLES["universe"])
df = self._filter_toronto(df)
# Filter to standard apartment structures
if "Type of structure" in df.columns:
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
if years:
df = df[df["REF_DATE"].isin(years)]
universe = {}
for _, row in df.iterrows():
year = int(row["REF_DATE"])
bedroom_raw = row.get("Type of unit", "Total")
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
value = row.get("VALUE")
if pd.notna(value) and value is not None:
universe[(year, bedroom)] = int(str(value))
logger.info(
f"Fetched rental universe for {len(universe)} year/bedroom combinations"
)
return universe
def get_average_rents(
self,
years: list[int] | None = None,
) -> dict[tuple[int, str], Decimal]:
"""Fetch Toronto average rents by year and bedroom type.
Args:
years: Optional list of years to filter.
Returns:
Dictionary mapping (year, bedroom_type) to average rent.
"""
df = self._download_table(CMHC_TABLES["rent"])
df = self._filter_toronto(df)
# Filter to standard apartment structures (most reliable data)
if "Type of structure" in df.columns:
df = df[df["Type of structure"] == self.STRUCTURE_FILTER]
if years:
df = df[df["REF_DATE"].isin(years)]
rents = {}
for _, row in df.iterrows():
year = int(row["REF_DATE"])
bedroom_raw = row.get("Type of unit", "Total")
bedroom = self.BEDROOM_TYPE_MAP.get(bedroom_raw, "other")
value = row.get("VALUE")
if pd.notna(value) and str(value) not in ("F", ".."):
with contextlib.suppress(Exception):
rents[(year, bedroom)] = Decimal(str(value))
logger.info(f"Fetched average rents for {len(rents)} year/bedroom combinations")
return rents
def get_all_rental_data(
self,
start_year: int = 2014,
end_year: int | None = None,
) -> list[CMHCRentalRecord]:
"""Fetch all Toronto rental data and combine into records.
Args:
start_year: First year to include.
end_year: Last year to include (defaults to current year + 1).
Returns:
List of CMHCRentalRecord objects ready for database loading.
"""
import datetime
if end_year is None:
end_year = datetime.date.today().year + 1
years = list(range(start_year, end_year + 1))
logger.info(
f"Fetching CMHC rental data for Toronto ({start_year}-{end_year})..."
)
# Fetch all data types
vacancy_rates = self.get_vacancy_rates(years)
rents = self.get_average_rents(years)
universe = self.get_rental_universe(years)
# Combine into records
records = []
bedroom_types = ["bachelor", "1bed", "2bed", "3bed"]
for year in years:
vacancy = vacancy_rates.get(year)
for bedroom in bedroom_types:
avg_rent = rents.get((year, bedroom))
units = universe.get((year, bedroom))
# Skip if no rent data for this year/bedroom
if avg_rent is None:
continue
records.append(
CMHCRentalRecord(
year=year,
month=10, # CMHC surveys in October
zone_name="Toronto CMA",
bedroom_type=bedroom,
avg_rent=avg_rent,
vacancy_rate=vacancy,
universe=units,
)
)
logger.info(f"Created {len(records)} CMHC rental records")
return records
def fetch_toronto_rental_data(
start_year: int = 2014,
end_year: int | None = None,
cache_dir: Path | None = None,
) -> list[CMHCRentalRecord]:
"""Convenience function to fetch Toronto rental data.
Args:
start_year: First year to include.
end_year: Last year to include.
cache_dir: Optional cache directory.
Returns:
List of CMHCRentalRecord objects.
"""
with StatCanCMHCParser(cache_dir=cache_dir) as parser:
return parser.get_all_rental_data(start_year, end_year)
if __name__ == "__main__":
# Test the parser
logging.basicConfig(level=logging.INFO)
records = fetch_toronto_rental_data(start_year=2020)
print(f"\nFetched {len(records)} records")
print("\nSample records:")
for r in records[:10]:
print(
f" {r.year} {r.bedroom_type}: ${r.avg_rent} rent, {r.vacancy_rate}% vacancy"
)

View File

@@ -6,6 +6,7 @@ from the City of Toronto's Open Data Portal.
API Documentation: https://open.toronto.ca/dataset/
"""
import contextlib
import json
import logging
from decimal import Decimal
@@ -193,6 +194,9 @@ class TorontoOpenDataParser:
def _fetch_geojson(self, package_id: str) -> dict[str, Any]:
"""Fetch GeoJSON data from a package.
Handles both pure GeoJSON responses and CSV responses with embedded
geometry columns (common in Toronto Open Data).
Args:
package_id: The package/dataset ID.
@@ -212,16 +216,65 @@ class TorontoOpenDataParser:
response = self.client.get(url)
response.raise_for_status()
data = response.json()
# Cache the response
# Try to parse as JSON first
try:
data = response.json()
# If it's already a valid GeoJSON FeatureCollection, return it
if isinstance(data, dict) and data.get("type") == "FeatureCollection":
if self._cache_dir:
self._cache_dir.mkdir(parents=True, exist_ok=True)
cache_file = self._cache_dir / f"{package_id}.geojson"
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(data, f)
return dict(data)
except json.JSONDecodeError:
pass
# If JSON parsing failed, it's likely CSV with embedded geometry
# Parse CSV and convert to GeoJSON FeatureCollection
logger.info("Response is CSV format, converting to GeoJSON...")
import csv
import io
# Increase field size limit for large geometry columns
csv.field_size_limit(10 * 1024 * 1024) # 10 MB
csv_text = response.text
reader = csv.DictReader(io.StringIO(csv_text))
features = []
for row in reader:
# Extract geometry from the 'geometry' column if present
geometry = None
if "geometry" in row and row["geometry"]:
with contextlib.suppress(json.JSONDecodeError):
geometry = json.loads(row["geometry"])
# Build properties from all other columns
properties = {k: v for k, v in row.items() if k != "geometry"}
features.append(
{
"type": "Feature",
"geometry": geometry,
"properties": properties,
}
)
geojson_data: dict[str, Any] = {
"type": "FeatureCollection",
"features": features,
}
# Cache the converted response
if self._cache_dir:
self._cache_dir.mkdir(parents=True, exist_ok=True)
cache_file = self._cache_dir / f"{package_id}.geojson"
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(data, f)
json.dump(geojson_data, f)
return dict(data)
return geojson_data
def _fetch_csv_as_json(self, package_id: str) -> list[dict[str, Any]]:
"""Fetch CSV data as JSON records via CKAN datastore.
@@ -282,29 +335,32 @@ class TorontoOpenDataParser:
props = feature.get("properties", {})
geometry = feature.get("geometry")
# Extract area_id from various possible property names
area_id = props.get("AREA_ID") or props.get("area_id")
if area_id is None:
# Try AREA_SHORT_CODE as fallback
short_code = props.get("AREA_SHORT_CODE", "")
if short_code:
# Extract numeric part
area_id = int("".join(c for c in short_code if c.isdigit()) or "0")
# Use AREA_SHORT_CODE as the primary ID (1-158 range)
# AREA_ID is a large internal identifier not useful for our schema
short_code = props.get("AREA_SHORT_CODE") or props.get(
"area_short_code", ""
)
if short_code:
area_id = int("".join(c for c in str(short_code) if c.isdigit()) or "0")
else:
# Fallback to _id (row number) if AREA_SHORT_CODE not available
area_id = int(props.get("_id", 0))
if area_id == 0:
logger.warning(f"Skipping neighbourhood with no valid ID: {props}")
continue
area_name = (
props.get("AREA_NAME")
or props.get("area_name")
or f"Neighbourhood {area_id}"
)
area_short_code = props.get("AREA_SHORT_CODE") or props.get(
"area_short_code"
)
records.append(
NeighbourhoodRecord(
area_id=int(area_id),
area_id=area_id,
area_name=str(area_name),
area_short_code=area_short_code,
area_short_code=str(short_code) if short_code else None,
geometry=geometry,
)
)
@@ -314,17 +370,17 @@ class TorontoOpenDataParser:
# Mapping of indicator names to CensusRecord fields
# Keys are partial matches (case-insensitive) found in the "Characteristic" column
# Order matters - first match wins, so more specific patterns come first
# Note: owner/renter counts are raw numbers, not percentages - calculated in dbt
CENSUS_INDICATOR_MAPPING: dict[str, str] = {
"population, 2021": "population",
"population, 2016": "population",
"population density per square kilometre": "population_density",
"median total income of household": "median_household_income",
"average total income of household": "average_household_income",
"median total income of households in": "median_household_income",
"average total income of households in": "average_household_income",
"unemployment rate": "unemployment_rate",
"bachelor's degree or higher": "pct_bachelors_or_higher",
"owner": "pct_owner_occupied",
"renter": "pct_renter_occupied",
"median age": "median_age",
"average age": "median_age",
"average value of dwellings": "average_dwelling_value",
}
@@ -358,17 +414,31 @@ class TorontoOpenDataParser:
logger.info(f"Fetched {len(raw_records)} census profile rows")
# Find the characteristic/indicator column name
# Prioritize "Characteristic" over "Category" since both may exist
sample_row = raw_records[0]
char_col = None
for col in sample_row:
col_lower = col.lower()
if "characteristic" in col_lower or "category" in col_lower:
char_col = col
break
# First try exact match for Characteristic
if "Characteristic" in sample_row:
char_col = "Characteristic"
else:
# Fall back to pattern matching
for col in sample_row:
col_lower = col.lower()
if "characteristic" in col_lower:
char_col = col
break
# Last resort: try Category
if not char_col:
for col in sample_row:
if "category" in col.lower():
char_col = col
break
if not char_col:
# Try common column names
for candidate in ["Characteristic", "Category", "Topic", "_id"]:
# Try other common column names
for candidate in ["Topic", "_id"]:
if candidate in sample_row:
char_col = candidate
break

View File

@@ -37,7 +37,7 @@ def get_neighbourhoods_geojson(year: int = 2021) -> dict[str, Any]:
ST_AsGeoJSON(geometry)::json as geom,
population,
livability_score
FROM mart_neighbourhood_overview
FROM public_marts.mart_neighbourhood_overview
WHERE year = :year
AND geometry IS NOT NULL
"""

View File

@@ -1,5 +1,6 @@
"""Service layer for querying neighbourhood data from dbt marts."""
import logging
from functools import lru_cache
from typing import Any
@@ -8,6 +9,8 @@ from sqlalchemy import text
from portfolio_app.toronto.models import get_engine
logger = logging.getLogger(__name__)
def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFrame:
"""Execute SQL query and return DataFrame.
@@ -23,8 +26,10 @@ def _execute_query(sql: str, params: dict[str, Any] | None = None) -> pd.DataFra
engine = get_engine()
with engine.connect() as conn:
return pd.read_sql(text(sql), conn, params=params)
except Exception:
# Return empty DataFrame on connection or query error
except Exception as e:
logger.error(f"Query failed: {e}")
logger.debug(f"Failed SQL: {sql}")
logger.debug(f"Params: {params}")
return pd.DataFrame()
@@ -56,7 +61,7 @@ def get_overview_data(year: int = 2021) -> pd.DataFrame:
rent_to_income_pct,
avg_rent_2bed,
total_amenities_per_1000
FROM mart_neighbourhood_overview
FROM public_marts.mart_neighbourhood_overview
WHERE year = :year
ORDER BY livability_score DESC NULLS LAST
"""
@@ -95,7 +100,7 @@ def get_housing_data(year: int = 2021) -> pd.DataFrame:
affordability_index,
rent_yoy_change_pct,
income_quintile
FROM mart_neighbourhood_housing
FROM public_marts.mart_neighbourhood_housing
WHERE year = :year
ORDER BY affordability_index ASC NULLS LAST
"""
@@ -112,26 +117,22 @@ def get_safety_data(year: int = 2021) -> pd.DataFrame:
Returns:
DataFrame with columns: neighbourhood_id, neighbourhood_name,
total_crime_rate, violent_crime_rate, property_crime_rate, etc.
total_crime_rate, violent_crimes, property_crimes, etc.
"""
sql = """
SELECT
neighbourhood_id,
neighbourhood_name,
year,
total_crimes,
total_incidents as total_crimes,
crime_rate_per_100k as total_crime_rate,
violent_crimes,
violent_crime_rate,
property_crimes,
property_crime_rate,
theft_crimes,
theft_rate,
crime_yoy_change_pct,
crime_trend
FROM mart_neighbourhood_safety
assault_count + robbery_count + homicide_count as violent_crimes,
break_enter_count + auto_theft_count as property_crimes,
theft_over_count as theft_crimes,
crime_yoy_change_pct
FROM public_marts.mart_neighbourhood_safety
WHERE year = :year
ORDER BY total_crime_rate ASC NULLS LAST
ORDER BY crime_rate_per_100k ASC NULLS LAST
"""
return _execute_query(sql, {"year": year})
@@ -152,22 +153,22 @@ def get_demographics_data(year: int = 2021) -> pd.DataFrame:
SELECT
neighbourhood_id,
neighbourhood_name,
census_year as year,
year,
population,
population_density,
population_change_pct,
median_household_income,
average_household_income,
income_quintile,
income_index,
median_age,
pct_under_18,
pct_18_to_64,
pct_65_plus,
pct_bachelors_or_higher,
age_index,
pct_owner_occupied,
pct_renter_occupied,
education_bachelors_pct as pct_bachelors_or_higher,
unemployment_rate,
diversity_index
FROM mart_neighbourhood_demographics
WHERE census_year = :year
tenure_diversity_index as diversity_index
FROM public_marts.mart_neighbourhood_demographics
WHERE year = :year
ORDER BY population DESC NULLS LAST
"""
return _execute_query(sql, {"year": year})
@@ -183,26 +184,26 @@ def get_amenities_data(year: int = 2021) -> pd.DataFrame:
Returns:
DataFrame with columns: neighbourhood_id, neighbourhood_name,
amenity_score, parks_per_capita, schools_per_capita, transit_score, etc.
amenity_score, parks_per_1000, schools_per_1000, etc.
"""
sql = """
SELECT
neighbourhood_id,
neighbourhood_name,
year,
park_count,
parks_count as park_count,
parks_per_1000,
school_count,
schools_count as school_count,
schools_per_1000,
childcare_count,
childcare_per_1000,
transit_count as childcare_count,
transit_per_1000 as childcare_per_1000,
total_amenities,
total_amenities_per_1000,
amenity_score,
amenity_rank
FROM mart_neighbourhood_amenities
amenity_index as amenity_score,
amenity_tier as amenity_rank
FROM public_marts.mart_neighbourhood_amenities
WHERE year = :year
ORDER BY amenity_score DESC NULLS LAST
ORDER BY amenity_index DESC NULLS LAST
"""
return _execute_query(sql, {"year": year})
@@ -249,17 +250,17 @@ def get_neighbourhood_details(
a.park_count,
a.school_count,
a.total_amenities
FROM mart_neighbourhood_overview o
LEFT JOIN mart_neighbourhood_safety s
FROM public_marts.mart_neighbourhood_overview o
LEFT JOIN public_marts.mart_neighbourhood_safety s
ON o.neighbourhood_id = s.neighbourhood_id
AND o.year = s.year
LEFT JOIN mart_neighbourhood_housing h
LEFT JOIN public_marts.mart_neighbourhood_housing h
ON o.neighbourhood_id = h.neighbourhood_id
AND o.year = h.year
LEFT JOIN mart_neighbourhood_demographics d
LEFT JOIN public_marts.mart_neighbourhood_demographics d
ON o.neighbourhood_id = d.neighbourhood_id
AND o.year = d.census_year
LEFT JOIN mart_neighbourhood_amenities a
LEFT JOIN public_marts.mart_neighbourhood_amenities a
ON o.neighbourhood_id = a.neighbourhood_id
AND o.year = a.year
WHERE o.neighbourhood_id = :neighbourhood_id
@@ -288,7 +289,7 @@ def get_neighbourhood_list(year: int = 2021) -> list[dict[str, Any]]:
neighbourhood_id,
neighbourhood_name,
population
FROM mart_neighbourhood_overview
FROM public_marts.mart_neighbourhood_overview
WHERE year = :year
ORDER BY neighbourhood_name
"""
@@ -317,19 +318,19 @@ def get_rankings(
"""
# Map metrics to their source tables
table_map = {
"livability_score": "mart_neighbourhood_overview",
"safety_score": "mart_neighbourhood_overview",
"affordability_score": "mart_neighbourhood_overview",
"amenity_score": "mart_neighbourhood_overview",
"crime_rate_per_100k": "mart_neighbourhood_safety",
"total_crime_rate": "mart_neighbourhood_safety",
"avg_rent_2bed": "mart_neighbourhood_housing",
"affordability_index": "mart_neighbourhood_housing",
"population": "mart_neighbourhood_demographics",
"median_household_income": "mart_neighbourhood_demographics",
"livability_score": "public_marts.mart_neighbourhood_overview",
"safety_score": "public_marts.mart_neighbourhood_overview",
"affordability_score": "public_marts.mart_neighbourhood_overview",
"amenity_score": "public_marts.mart_neighbourhood_overview",
"crime_rate_per_100k": "public_marts.mart_neighbourhood_safety",
"total_crime_rate": "public_marts.mart_neighbourhood_safety",
"avg_rent_2bed": "public_marts.mart_neighbourhood_housing",
"affordability_index": "public_marts.mart_neighbourhood_housing",
"population": "public_marts.mart_neighbourhood_demographics",
"median_household_income": "public_marts.mart_neighbourhood_demographics",
}
table = table_map.get(metric, "mart_neighbourhood_overview")
table = table_map.get(metric, "public_marts.mart_neighbourhood_overview")
year_col = "census_year" if "demographics" in table else "year"
order = "ASC" if ascending else "DESC"
@@ -375,7 +376,7 @@ def get_city_averages(year: int = 2021) -> dict[str, Any]:
AVG(crime_rate_per_100k) as avg_crime_rate,
AVG(avg_rent_2bed) as avg_rent_2bed,
AVG(rent_to_income_pct) as avg_rent_to_income
FROM mart_neighbourhood_overview
FROM public_marts.mart_neighbourhood_overview
WHERE year = :year
"""
df = _execute_query(sql, {"year": year})

View File

@@ -34,6 +34,8 @@ dependencies = [
"pandas>=2.3",
"geopandas>=1.1",
"shapely>=2.0",
"pyproj>=3.6",
"statsmodels>=0.14",
# Visualization
"dash>=3.3",
@@ -69,6 +71,10 @@ dev = [
# Pre-commit
"pre-commit>=4.0",
# Jupyter
"jupyter>=1.0",
"ipykernel>=6.29",
# Type stubs
"pandas-stubs",
"types-requests",

View File

@@ -28,8 +28,13 @@ from datetime import date
from pathlib import Path
from typing import Any
from dotenv import load_dotenv
# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent.parent
# Load .env file so dbt can access POSTGRES_* environment variables
load_dotenv(PROJECT_ROOT / ".env")
sys.path.insert(0, str(PROJECT_ROOT))
from portfolio_app.toronto.loaders import ( # noqa: E402
@@ -38,12 +43,16 @@ from portfolio_app.toronto.loaders import ( # noqa: E402
load_census_data,
load_crime_data,
load_neighbourhoods,
load_statcan_cmhc_data,
load_time_dimension,
)
from portfolio_app.toronto.parsers import ( # noqa: E402
TorontoOpenDataParser,
TorontoPoliceParser,
)
from portfolio_app.toronto.parsers.statcan_cmhc import ( # noqa: E402
fetch_toronto_rental_data,
)
from portfolio_app.toronto.schemas import Neighbourhood # noqa: E402
# Configure logging
@@ -91,6 +100,9 @@ class DataPipeline:
# 5. Load amenities
self._load_amenities(session)
# 6. Load CMHC rental data from StatCan
self._load_rentals(session)
session.commit()
logger.info("All data committed to database")
@@ -241,6 +253,32 @@ class DataPipeline:
self.stats["amenities"] = total_count
def _load_rentals(self, session: Any) -> None:
"""Fetch and load CMHC rental data from StatCan."""
logger.info("Fetching CMHC rental data from Statistics Canada...")
if self.dry_run:
logger.info(" [DRY RUN] Would fetch and load CMHC rental data")
return
try:
# Fetch rental data (2014-present)
rental_records = fetch_toronto_rental_data(start_year=2014)
if not rental_records:
logger.warning(" No rental records fetched")
return
count = load_statcan_cmhc_data(rental_records, session)
self.stats["rentals"] = count
logger.info(f" Loaded {count} CMHC rental records")
except Exception as e:
logger.warning(f" Failed to load CMHC rental data: {e}")
if self.verbose:
import traceback
traceback.print_exc()
def run_dbt(self) -> bool:
"""Run dbt to transform data.
@@ -250,30 +288,46 @@ class DataPipeline:
logger.info("Running dbt transformations...")
dbt_project_dir = PROJECT_ROOT / "dbt"
venv_dbt = PROJECT_ROOT / ".venv" / "bin" / "dbt"
# Use venv dbt if available, otherwise fall back to system dbt
dbt_cmd = str(venv_dbt) if venv_dbt.exists() else "dbt"
if not dbt_project_dir.exists():
logger.error(f"dbt project directory not found: {dbt_project_dir}")
return False
if self.dry_run:
logger.info(" [DRY RUN] Would run: dbt deps")
logger.info(" [DRY RUN] Would run: dbt run")
logger.info(" [DRY RUN] Would run: dbt test")
return True
try:
# Run dbt models
logger.info(" Running dbt run...")
# Install dbt packages if needed
logger.info(" Running dbt deps...")
result = subprocess.run(
["dbt", "run"],
[dbt_cmd, "deps", "--profiles-dir", str(dbt_project_dir)],
cwd=dbt_project_dir,
capture_output=True,
text=True,
)
if result.returncode != 0:
logger.error(f"dbt run failed:\n{result.stderr}")
if self.verbose:
logger.debug(f"dbt output:\n{result.stdout}")
logger.error(f"dbt deps failed:\n{result.stdout}\n{result.stderr}")
return False
# Run dbt models
logger.info(" Running dbt run...")
result = subprocess.run(
[dbt_cmd, "run", "--profiles-dir", str(dbt_project_dir)],
cwd=dbt_project_dir,
capture_output=True,
text=True,
)
if result.returncode != 0:
logger.error(f"dbt run failed:\n{result.stdout}\n{result.stderr}")
return False
logger.info(" dbt run completed successfully")
@@ -281,14 +335,16 @@ class DataPipeline:
# Run dbt tests
logger.info(" Running dbt test...")
result = subprocess.run(
["dbt", "test"],
[dbt_cmd, "test", "--profiles-dir", str(dbt_project_dir)],
cwd=dbt_project_dir,
capture_output=True,
text=True,
)
if result.returncode != 0:
logger.warning(f"dbt test had failures:\n{result.stderr}")
logger.warning(
f"dbt test had failures:\n{result.stdout}\n{result.stderr}"
)
# Don't fail on test failures, just warn
else:
logger.info(" dbt test completed successfully")

Some files were not shown because too many files have changed in this diff Show More